精英家教网 > 高中数学 > 题目详情

【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:

(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)

(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件为“其中2 个成绩分别属于不同的同学”,求事件发生的概率.

【答案】(I)见解析.

(Ⅱ)乙的成绩的平均分比甲的成绩的平均分高,乙同学的成绩比甲同学的成绩更稳定集中.

(III).

【解析】分析:(I)根据中位数的定义可得甲、乙两位同学成绩的中位数,由茎叶图可得频数,由频数得频率,从而可得纵坐标,进而可补全直方图;(Ⅱ)从茎叶图可以看出,乙的成绩的平均分比甲的成绩的平均分高,乙同学的成绩比甲同学的成绩更稳定集中;(III)利用列举法甲乙两位同学的不低于140分的成绩中任意选出2个成绩的基本事件有其中2个成绩分属不同同学的事件有利用古典概型概率公式可得结果.

详解(I)甲的成绩的中位数是119,乙的成绩的中位数是128,

(II)

从茎叶图可以看出,乙的成绩的平均分比甲的成绩的平均分高,乙同学的成绩比甲同学的成绩更稳定集中 . (III)甲同学的不低于140分的成绩有2个设为a,b,乙同学的不低于140分的成绩有3个,设为c,d,e

现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩有:(a,b),(a,c)(a,d)(a,e)(b,c)(b,d)(b,e)(c,d)(c,e)(d,e)共10种,

其中2个成绩分属不同同学的情况有: (a,c)(a,d)(a,e)(b,c)(b,d)(b,e)共6种

因此事件A发生的概率P(A)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解中学生对交通安全知识的掌握情况,从农村中学和城镇中学各选取100名同学进行交通安全知识竞赛.下图1和图2分别是对农村中学和城镇中学参加竞赛的学生成绩按分组,得到的频率分布直方图.

(Ⅰ)分别估算参加这次知识竞赛的农村中学和城镇中学的平均成绩;

(Ⅱ)完成下面列联表,并回答是否有的把握认为“农村中学和城镇中学的学生对交通安全知识的掌握情况有显著差异”?

成绩小于60分人数

成绩不小于60分人数

合计

农村中学

城镇中学

合计

附:

临界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:椭圆的顶点为,左右焦点分别为

(1)求椭圆的方程;

(2)过右焦点的直线与椭圆相交于两点,试探究在轴上是否存在定点,使得为定值?若存在求出点的坐标,若不存在请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线处的切线方程为.

(1)求的解析式;

(2)当时,求证:

(3)若对任意的恒成立,则实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为:.

(1)若曲线参数方程为:为参数),求曲线的直角坐标方程和曲线的普通方程;

(2)若曲线参数方程为:为参数),,且曲线与曲线交点分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视厂家准备在五一举行促销活动,现在根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x(万元)和销售量y(万台)的数据如下:

(1)若用线性回归模型拟合y与x的关系,求出y关于x的线性回归方程(其中;参考方程:回归直线

(2)若用模型拟合y与x的关系,可得回归方程,经计算线性回归模型和该模型的分别约为0.75和0.88,请用说明选择哪个回归模型更好;

(3)已知利润z与x,y的关系为z=200y﹣x.根据(2)的结果回答:当广告费x=20时,销售量及利润的预报值是多少?(精确到0.01)参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,焦距为,点为椭圆上一点,的面积为.

(1)求椭圆的标准方程;

(2)设点为椭圆的上顶点,过椭圆内一点的直线交椭圆于两点,若的面积比为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,的中点,,现在沿折起使点到点P处,得到三棱锥,且平面平面.

(1)棱上是否存在一点,使得平面?请说明你的结论;

(2)求证:平面

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,A,B,C三点满足

(1)求证:A,B,C三点共线;

(2)若A(1,cosx),B1+sinxcosx),且x∈[0, ],函数f(x)=2m+||+m2的最小值为5,求实数m的值。

查看答案和解析>>

同步练习册答案