精英家教网 > 高中数学 > 题目详情

如图,是圆的直径,点在圆上,于点
平面
(1)证明:
(2)求平面与平面所成的锐二面角的余弦值.

(1)证明见试题解析;(2).

解析试题分析:(1)①根据处取得极值,求导将带入到导函数中,联立方程组求出的值;②存在性恒成立问题,,只需,进入通过求导求出的极值,最值.(2)当的未知时,要根据中分子是二次函数形式按进行讨论.
试题解析:(1)定义域为.
,
因为处取和极值,故,
,解得.
②由题意:存在,使得不等式成立,则只需
,令,令
所以上单调递减,上单调递增,上单调递减
所以处取得极小值,
而最大值需要比较的大小,
,
,
比较与4的大小,而,所以

所以
所以.
(2)当 时,
①当时,上单调递增;
②当时,∵ ,则上单调递增;
③当时,设,只需,从而得,此时上单调递减;
综上可得,.
考点:1.利用导数求函数的极值、最值;2.函数恒成立问题;3.利用单调性求参数范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥.

(1)请判断与平面的位置关系,并给出证明;
(2)证明平面
(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,四条侧棱长均相等.

(1)求证:平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱锥,底面是边长为的正方形,⊥面,过点,连接
(Ⅰ)求证:
(Ⅱ)若面交侧棱于点,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.

(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1
(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱锥,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC

(1) 求证:AB⊥平面ADC;
(2) 求三棱锥的体积;
(3) 求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在圆锥中,已知,⊙O的直径的中点,的中点.

(1)证明:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设正四棱锥的侧面积为,若

(1)求四棱锥的体积;
(2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,空间四边形的对棱的角,且,平行于的截面分别交

(1)求证:四边形为平行四边形;
(2)的何处时截面的面积最大?最大面积是多少?

查看答案和解析>>

同步练习册答案