精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow a=(1,1),\overrightarrow b=(2,-3)$若$λ\overrightarrow a-2\overrightarrow b$与$\overrightarrow a$垂直,求λ的值;若$\overrightarrow a-2k\overrightarrow b$与$\overrightarrow a+\overrightarrow b$平行,求k的值.

分析 (1)利用向量垂直与数量积的关系即可得出.
(2)利用向量共线定理即可得出.

解答 解:(1)$λ\overrightarrow a-2\overrightarrow b$=(λ-4,λ+6),
∵$λ\overrightarrow a-2\overrightarrow b$与$\overrightarrow a$垂直,∴($λ\overrightarrow a-2\overrightarrow b$)•$\overrightarrow a$=λ-4+λ+6=,
解得λ=-1.
(2)$\overrightarrow a-2k\overrightarrow b$=(1-4k,1+6k),
$\overrightarrow a+\overrightarrow b$=(3,-1).
∵$\overrightarrow a-2k\overrightarrow b$与$\overrightarrow a+\overrightarrow b$平行,∴3(1+6k)+(1-4k)=0,
解得k=-$\frac{2}{7}$.

点评 本题考查了向量垂直与数量积的关系、向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.“开门大吉”是某电视台推出的游戏节目,选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(Ⅰ)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由:(下面的临界值表供参考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将一枚质地均匀的骰子抛掷两次,落地时朝上的点数之和为6的概率为(  )
A.$\frac{5}{36}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=1+2sin(2x-\frac{π}{3})$.

(Ⅰ)用五点法作图作出f(x)在x∈[0,π]的图象;
(2)求f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]的最大值和最小值;
(3)若不等式f(x)-m<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.$f(x)={e^{-{x^2}+3x+1}}$,求f′(x)(  )
A.f(x)=(-2x+3)exB.f(x)=e-2x+3
C.$f(x)={e^{-{x^2}+3x+1}}$D.$f(x)=(-2x+3){e^{-{x^2}+3x+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$,直线l:4x-5y+40=0.椭圆上是否存在一点,它到直线l的距离最小?最小距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=2$,若$(\overrightarrow a+\overrightarrow{b)}⊥\overrightarrow a$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)为奇函数,当x<0时,f(x)=ln(-x)+2x,则曲线y=f(x)在点(1,f(1))处的切线方程是x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)是定义在实数集R上的奇函数,当x>0时,$f(x)=\frac{k}{x+1},k∈R,k≠0$..
(1)当k=1时,求f(x)的解析式;
(2)已知0<x<1时,f(x)>1恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案