精英家教网 > 高中数学 > 题目详情
已知正数x,y满足2x+y=1,且
a
x
+
1
y
的最小值是9,则正数a的值是(  )
A、1B、2C、4D、8
分析:先将欲求的式子
a
x
+
1
y
变形为 (2x+y)(
a
x
+
1
y
),利用基本不等式即可得到
a
x
+
1
y
的最小值,建立等式关系,即可求出a值.
解答:解:∵正数x,y满足2x+y=1,
a
x
+
1
y
=(2x+y)(
a
x
+
1
y
)=2a+1+
2x
y
+
ay
x
≥2a+2
2x
y
×
ay
x
=2a+1+2
2a
=(
2a
+1
2=9,
当且仅当
2x
y
=
ay
x
时取等号,
则有
2a
+1
=3,解得a=2.
故选:B.
点评:本题考查基本不等式的应用,把要求的式子
a
x
+
1
y
变形为 (2x+y)(
a
x
+
1
y
)是解题的关键.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正数x,y满足(1+x)(1+2y)=2,则4xy+
1xy
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数x,y满足
x-y+2≥0
4x-y-1≤0
则z=4x•2y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知正数x、y满足2x+y=1,求
1
x
+
1
y
的最小值及对应的x、y值.
(2)已知x>-2,求函数y=x+
16
x+2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数x,y满足x+2y=3,当xy取得最大值时,过点P(x,y)引圆(x-
1
2
)2+(y+
1
4
)2=
1
2
的切线,则此切线段的长度为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知正数x、y满足2x+y=1,求
1
x
+
1
y
的最小值及对应的x、y值.
(2)已知x、y为正实数,且2x+y+6=xy,求x+y的最小值.

查看答案和解析>>

同步练习册答案