精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=kx+b的图象过点(2,1),且b2﹣6b+9≤0
(1)求函数f(x)的解析式;
(2)若a>0,解关于x的不等式x2﹣(a2+a+1)x+a3+3<f(x).

【答案】
(1)解:(1)∵f(x)=kx+b的图象过点(2,1),且b2﹣6b+9≤0,

,解得b=3,k=﹣1.

∴f(x)=﹣x+3.


(2)解:∵a>0,x2﹣(a2+a+1)x+a3+3<f(x),

∴﹣x+3>x2﹣(a2+a+1)x+a3+3,

∴x2﹣(a2+a)x+a3<0,

解方程x2﹣(a2+a)x+a3=0,得x1=a,

当0<a<1时,原不等式的解集为:{x|a2<x<a};

当a=1时,原不等式的解集为:{x|x≠1};

当a>1时,原不等式的解集为:{x|a<x<a2}


【解析】(1)由已知得 ,由此能求出f(x).(2)原不等式等价于x2﹣(a2+a)x+a3<0,由此能求出关于x的不等式x2﹣(a2+a+1)x+a3+3<f(x).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,某几何体的三视图中,俯视图是边长为2的正三角形,正视图和左视图分别为直角梯形和直角三角形,则该几何体的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,已知四边形是由直角△和直角梯形拼接而成的,其中

.且点为线段的中点, 现将△沿进行翻折,使得二面角

的大小为,得到图形如图(2)所示,连接,点分别在线段上.

(1)证明:

(2)若三棱锥的体积为四棱锥体积的,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入的部分数据如表:

x

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

﹣2


(1)请将上表数据补全,并直接写出函数f(x)的解析式;
(2)当x∈[0, ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形, 点在底面内的射影在线段上,且 的中点, 在线段上,且.

(1)当时,证明:平面平面

(2)当时,求平面与平面所成的二面角的正弦值及四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,如果存在正实数,使得对任意,都有,且恒成立,则称函数上的“的型增函数”,已知是定义在上的奇函数,且在时, ,若上的“2017的型增函数”,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0)
(1)若a=1,证明:y=f(x)在R上单调递减;
(2)当a>1时,讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数).

(1)求函数的单调区间;

(2)若,当时,求函数的最大值;

(3)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验统计结果如下

方式

实施地点

大雨

中雨

小雨

模拟实验次数

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,且不考虑洪涝灾害,请根据统计数据:

1)求甲、乙、丙三地都恰为中雨的概率;

2考虑不同地区的干旱程度,当雨量达到理想状态时,能缓解旱情,若甲、丙地需中雨或大雨即达到理想状态,乙地必须是大雨才达到理想状态,记甲、乙、丙三地中缓解旱情的个数为随机变量,求的分布列和数学期望

查看答案和解析>>

同步练习册答案