【题目】2019年3月2日,昌平 “回天”地区开展了种不同类型的 “三月雷锋月,回天有我”社会服务活动. 其中有种活动既在上午开展、又在下午开展, 种活动只在上午开展,种活动只在下午开展 . 小王参加了两种不同的活动,且分别安排在上、下午,那么不同安排方案的种数是___________.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为(为参数),与交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)设点;若、、成等比数列,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C2的方程为(x-1)2+(y-1)2=2.
(1)在以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C1,C2的极坐标方程;
(2)直线θ=β(0<β<π)与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱中,底面是正三角形,侧棱底面.D,E分别是边BC,AC的中点,线段与交于点G,且,.
(1)求证:∥平面;
(2)求证:⊥平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线过点,是抛物线上异于点的不同两点,且以线段为直径的圆恒过点.
(I)当点与坐标原点重合时,求直线的方程;
(II)求证:直线恒过定点,并求出这个定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于集合,,,.集合中的元素个数记为.规定:若集合满足,则称集合具有性质.
(I)已知集合,,写出,的值;
(II)已知集合,为等比数列,,且公比为,证明:具有性质;
(III)已知均有性质,且,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①方程表示一个圆;
②若,则方程表示焦点在轴上的椭圆;
③已知点,若,则动点的轨迹是双曲线的右支;
④以过抛物线焦点的弦为直径的圆与该抛物线的准线相切,
其中正确说法的个数是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com