精英家教网 > 高中数学 > 题目详情
1.在平面直角坐标系中,以坐标原点O和A(5,2)为顶点作等腰直角△ABO,使∠B=90°,求点B和向量$\overrightarrow{AB}$的坐标.

分析 设B(x,y),则$\overrightarrow{OB}=(x,y),\overrightarrow{AB}=(x-5,y-2)$,由此利用$\overrightarrow{OB}⊥\overrightarrow{AB}$,$|{\overrightarrow{OB}}|=|{\overrightarrow{AB}}|$,能求出点B和向量$\overrightarrow{AB}$的坐标.

解答 (本小题满分12分)
解:如图,设B(x,y),则$\overrightarrow{OB}=(x,y),\overrightarrow{AB}=(x-5,y-2)$,…(2分)
∵$\overrightarrow{OB}⊥\overrightarrow{AB}$,∴$\overrightarrow{OB}•\overrightarrow{AB}=0$…(4分)
∴x(x-5)+y(y-2)=0,即x2+y2-5x-2y=0…(6分)
又∵$|{\overrightarrow{OB}}|=|{\overrightarrow{AB}}|$,…(8分)
∴x2+y2=(x-5)2+(y-2)2,即10x+4y=29…(10分)
由$\left\{\begin{array}{l}{x^2}+{y^2}-5x-2y=0\\ 10x+4y=29\end{array}\right.$解得$\left\{\begin{array}{l}{x_1}=\frac{7}{2}\\{y_1}=-\frac{3}{2}\end{array}\right.$或$\left\{\begin{array}{l}{x_2}=\frac{3}{2}\\{y_2}=\frac{7}{2}\end{array}\right.$
∴B点的坐标为$({\frac{7}{2},\;-\frac{3}{2}})或({\frac{3}{2},\;\frac{7}{2}})$,…(11分)
$\overrightarrow{AB}=({-\frac{3}{2},\;-\frac{7}{2}})或\overrightarrow{AB}=({-\frac{7}{2},\;\frac{3}{2}\;})$…(12分)

点评 本题考查点的坐标及向量坐标的求法,是基础题,解题时要认真审题,注意向量坐标运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数y=($\frac{1}{2}$)${\;}^{2{x}^{2}-3x+1}$的递减区间为(  )
A.[$\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$]C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知$z=\frac{1+2i}{3-4i}$,求|z|;
(2)已知2-3i是关于x的一元二次实系数方程x2+px+q=0的一个根,求实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={1,2,3},B={2,3},则(  )
A.A?BB.A=BC.A∪B=∅D.B?A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=ex-k在区间(0,1)内存在零点,则参数k的取值范围是(1,e).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax的图象过点$(1,\;\frac{1}{2})$,且点$(n-1,\;\frac{a_n}{n^2})(n∈{N^*})$在函数f(x)=ax的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令${b_n}=\frac{a_n}{n}$,若数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F为双曲线$C:\frac{x^2}{3a}-\frac{y^2}{3}=1(a>0)$的一个焦点,则点F到C的一条渐近线的距离为(  )
A.$\sqrt{3}$B.3C.$\sqrt{3}a$D.3a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,点$R({\frac{{\sqrt{2}}}{2},\frac{{\sqrt{14}}}{4}})$在椭圆上.
(1)求椭圆C的标准方程;
(2)直线y=k(x-1)(k≠0)与椭圆交于A,B两点,点M是椭圆C的右顶点,直线AM与直线BM分别与轴交于点P,Q,求|OP|•|OQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数y=f(x)的定义域为[1,5],则函数y=f(2x-1)+(2x+1)的定义域[1,2].

查看答案和解析>>

同步练习册答案