精英家教网 > 高中数学 > 题目详情

【题目】2017年3月14日,“ofo共享单车”终于来到芜湖,ofo共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的100名市民,并根据这100名市民对该项目满意程度的评分,绘制了如下频率分布直方图: (I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;
(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.
(注:满意指数=

【答案】解:(I)依题意得:评分在[40,50)、[50,60)的频率分别为0.02和0.03,

所以评分在[40,50)、[50,60)的市民分别有2个和3个,记为A1,A2,B1,B2,B3

从评分低于6(0分)的市民中随机抽取2人,所有可能的结果共有10种,

它们是{A1,A2},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{B1,B2},{B1,B3},{B2,B3}.

其中2人评分都在[50,60)的有三种,即{B1,B2},{B1,B3},{B2,B3}.

故所求的概率为

(II)由样本的频率分布直方图可得满意程度的平均得分为45×0.02+55×0.03+65×0.15+75×0.24+85×0.3+95×0.26=80.5.

可估计市民的满意指数为

所以该项目能通过验收.


【解析】(I)利用列举法确定基本事件,即可求出这2人评分恰好都在[50,60)的概率;(II)求出市民的满意指数,可得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2+bx+c.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;
(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=eax+λlnx,其中a<0,0<λ< ,e是自然对数的底数
(1)求证:函数f(x)有两个极值点;
(2)若﹣e≤a<0,求证:函数f(x)有唯一零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分别为边AC,AB的中点,点F,G分别为线段CD,BE的中点.将△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.点Q为线段A1B上的一点,如图2.
(Ⅰ)求证:A1F⊥BE;
(Ⅱ)线段A1B上是否存在点Q使得FQ∥平面A1DE?若存在,求出A1Q的长,若不存在,请说明理由;
(Ⅲ)当 时,求直线GQ与平面A1DE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= 有最大值,则实数a的取值范围是(
A.
B.
C.[﹣2,+∞)
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)试比较f(﹣1)与f(a)的大小;
(Ⅱ)当a≥﹣1时,若函数f(x)的图象和x轴围成一个三角形,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y=axb(a,b为大于0的常数).现随机抽取6件合格产品,测得数据如下:

尺寸(mm)

38

48

58

68

78

88

质量(g)

16.8

18.8

20.7

22.4

24.0

25.5

对数据作了初步处理,相关统计量的值如下表:

75.3

24.6

18.3

101.4

(Ⅰ)根据所给数据,求y关于x的回归方程;
(Ⅱ)按照某项指标测定,当产品质量与尺寸的比在区间( )内时为优等品.现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.
附:对于一组数据(v1 , u1),(v2 , u2),…,(vn , un),其回归直线u=α+βv的斜率和截距的最小二乘估计分别为 = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C所对的边分别为a,b,c,且A=2C.
(1)若△ABC为锐角三角形,求 的取值范围;
(2)若b=1,c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“抛物线 的准线方程为 ”是“抛物线 的焦点与双曲线 的焦点重合”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案