精英家教网 > 高中数学 > 题目详情

【题目】某射手射击1,击中目标的概率是0.9,他连续射击4,且各次射击是否击中目标相互之间没有影响,有下列结论:

①他第3次击中目标的概率是0.9;

②他恰好击中目标3次的概率是;

③他至少击中目标1次的概率是;

④他至多击中目标1次的概率是

其中正确结论的序号是(

A.①②③B.①③

C.①④D.①②

【答案】B

【解析】

根据相互独立事件的概念和计算,通过计算逐一判断四个结论的正确性.

①,由于各次射击是否击中目标相互之间没有影响,所以他第3次击中目标的概率是0.9,故①正确.

②,他恰好击中目标3次的概率是,故②错误.

③,根据对立事件概率计算公式可知,他至少击中目标1次的概率是,故③正确.

④,他至多击中目标1次的概率是,故④错误.

所以正确的结论序号是①③.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,椭圆上的点到左焦点的最小值为.

(1)求椭圆的方程;

(2)已知直线轴交于点,过点的直线交于两点,点为直线上任意一点,设直线与直线交于点,记的斜率分别为,则是否存在实数,使得恒成立?若是,请求出的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,平面平面.

(1)求证:平面

(2)求平面与平面夹角的余弦值,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:,其中.

(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.

(2)若平均每趟地铁每分钟的净收益为(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校在学校内招募了名男志愿者和名女志愿者,将这名志愿者的身高编成如茎叶图所示(单位:),若身高在以上(包括)定义为“高个子”,身高在以下(不包括)定义为“非高个子”。

(Ⅰ)根据数据分别写出男、女两组身高的中位数;

(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则各抽几人?

(Ⅲ)在(Ⅱ)的基础上,从这人中选人,那么至少有一人是“高个子”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当时,求函数在点处的切线方程;

2)若函数存在两个极值点

①求实数的范围;

②证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 中,分别为边的中点,以为折痕把折起,使点到达点的位置,且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东方商店欲购进某种食品(保质期两天),此商店每两天购进该食品一次(购进时,该食品为刚生产的).根据市场调查,该食品每份进价元,售价元,如果两天内无法售出,则食品过期作废,且两天内的销售情况互不影响,为了了解市场的需求情况,现统计该产品在本地区天的销售量如下表:

(视样本频率为概率)

(1)根据该产品天的销售量统计表,记两天中一共销售该食品份数为,求的分布列与期望

(2)以两天内该产品所获得的利润期望为决策依据,东方商店一次性购进份,哪一种得到的利润更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】折纸与数学有着千丝万缕的联系,吸引了人们的广泛兴趣.因纸的长宽比称为白银分割比例,故纸有一个白银矩形的美称.现有一张如图1所示的

分别为的中点,将其按折痕折起(如图2),使得四点重合,重合后的点记为,折得到一个如图3所示的三棱锥.记的中点,在中,边上的高.

1)求证:平面

2)若分别是棱上的动点,且.当三棱锥的体积最大时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案