【题目】已知椭圆的两个焦点分别为和,过点的直线与椭圆相交与两点,且.
(1)求椭圆的离心率;
(2)求直线的斜率;
(3)设点与点关于坐标原点对称,直线上有一点在的外接圆上,且,求椭圆方程.
【答案】(1).
(2).
(3).
【解析】
(1)由,,得,得到的关系式,由此能求出离心率;(2)将椭圆的方程为写为,设直线的方程为,设,,联立方程组,由此利用根的判别式、韦达定理,结合已知条件能求出直线的斜率;(3)求出,,取,得,推导出外接圆的方程,与直线的方程联立解出,得,再由,解得,由此能求出椭圆方程.
(1)由且,得,从而
整理,得,故离心率.
(2)由(1)得,所以椭圆的方程可写为
设直线的方程为,即.
由已知设,则它们的坐标满足方程组
消去整理,得.
依题意,,得.
而 ①
②
由题设知,点为线段的中点,所以
③
联立①③解得
将 代入②中,解得.
(3)由(2)可知.
不妨取,得,由已知得.
线段的垂直平分线的方程为,直线与轴的交点是外接圆的圆心,因此外接圆的方程为.
直线的方程为,于是点的坐标满足方程组
,由,解得
由 解得
故椭圆方程为.
科目:高中数学 来源: 题型:
【题目】某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列结论:
(1)若对任意,且,都有,则为R上的减函数;
(2)若为R上的偶函数,且在内是减函数, ,则解集为;
(3)若为R上的奇函数,则也是R上的奇函数;
(4)为常数,若对任意的,都有则关于对称.
其中所有正确的结论序号为_________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在试验E“连续抛掷一枚骰子2次,观察每次掷出的点数”中,事件A表示随机事件“第一次掷出的点数为1”,事件表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j,事件B表示随机事件“2次掷出的点数之和为6”,事件C表示随机事件“第二次掷出的点数比第一次的大3”,
(1)试用样本点表示事件与;
(2)试判断事件A与B,A与C,B与C是否为互斥事件;
(3)试用事件表示随机事件A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)把本不同的书分给位学生,每人至少一本,有多少种方法?
(2)由这个数字组成没有重复数字的四位偶数由多少个?
(3)某旅行社有导游人,其中人只会英语,人只会日语,其余人既会英语,也会日语,现从中选人,其中人进行英语导游,另外人进行日语导游,则不同的选择方法有多少种?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com