精英家教网 > 高中数学 > 题目详情

【题目】一件刚出土的珍贵文物要在博物馆大厅中央展出,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积0.5立方米,其底部是直径为0.9米的圆形,要求文物底部与玻璃罩底边至少间隔0.3米,文物顶部与玻璃罩上底面至少间隔0.2米,气体每立方米1000元,则气体费用最少为( )元

A.4500B.4000C.2880D.2380

【答案】B

【解析】

根据题意,先求得正四棱柱的底面棱长和高,由体积公式即可求得正四棱柱的体积.减去文物的体积,即可求得罩内的气体体积,进而求得所需费用.

由题意可知, 文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3

所以由正方形与圆的位置关系可知,底面正方形的边长为

文物高1.8,文物顶部与玻璃罩上底面至少间隔0.2

所以正四棱柱的高为

则正四棱柱的体积为

因为文物体积为

所以罩内空气的体积为

气体每立方米

所以共需费用为

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知位数满足下列条件:①各个数字只能从集合中选取;②若其中有数字,则在的前面不含,将这样的位数的个数记为

1)求

2)探究之间的关系,求出数列的通项公式;

3)对于每个正整数,在之间插入得到一个新数列,设是数列的前项和,试探究能否成立,写出你探究得到的结论并给出证明;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a为非零常数.

讨论的极值点个数,并说明理由;

证明:在区间内有且仅有1个零点;的极值点,的零点且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若,求曲线处的切线方程;

(2)设函数若至少存在一个,使得成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数据是郑州市普通职工个人的年收入,若这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A.年收入平均数大大增大,中位数一定变大,方差可能不变

B.年收入平均数大大增大,中位数可能不变,方差变大

C.年收入平均数大大增大,中位数可能不变,方差也不变

D.年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)试判断函数的单调性;

)若函数上有且仅有一个零点,

i)求证:此零点是的极值点;

)求证:.

(本题可能会用到的数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

(2)若函数的导函数上有三个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

(1)讨论函数的单调性;

(2)若的极值点,且曲线在两点 处的切线互相平行,这两条切线在y轴上的截距分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,直线l与椭圆C交于PQ两点,且点M满足.

1)若点,求直线的方程;

2)若直线l过点且不与x轴重合,过点M作垂直于l的直线y轴交于点,求实数t的取值范围.

查看答案和解析>>

同步练习册答案