精英家教网 > 高中数学 > 题目详情

如图,正方形与梯形所在的平面互相垂直,的中点.
(1)求证:∥平面
(2)求证:平面平面
(3)求平面与平面所成锐二面角的余弦值.

(1)证明过程详见解析;(2)证明过程详见解析;(3).

解析试题分析:本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作出辅助线MN,N为中点,在中,利用中位线得到,且,结合已知条件,可证出四边形ABMN为平行四边形,所以,利用线面平行的判定,得∥平面;第二问,利用面面垂直的性质,判断,再利用已知的边长,可证出,则利用线面垂直的判定得平面BDE,再利用面面垂直的判定得平面平面;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法建立空间直角坐标系,求出平面BEC和平面ADEF的法向量,利用夹角公式计算即可.
(1)证明:取中点,连结

在△中,
分别为的中点,所以,且
.由已知,所以
,且.所以四边形为平行四边形,
所以
又因为平面,且平面
所以∥平面.                      4分
(2)证明:在正方形中,.又因为
平面平面,且平面平面
所以平面.所以.             6分
在直角梯形中,,可得
在△中,,所以.         7分
所以平面.             8分
又因为平面,所以平面平面.        9分
(3)(方法一)延长交于

在平面内过

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

.在平面直角坐标系中,方程表示过点且平行于轴的直线。类比以上结论有:在空间直角坐标系中,方程表示         。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,平面为棱上的动点,.
⑴当的中点,求直线与平面所成角的正弦值;
⑵当的值为多少时,二面角的大小是45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体中,底面BCFE是梯形,EF//BC,又EF平面AEB,AEEB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB//平面DEG;
(2)求证:BDEG;
(3)求二面角C—DF—E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以为边的平行四边形的面积;
(2)若|a|=,且a分别与垂直,求向量a的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四边形ABCD满足,E是BC的中点,将△BAE沿AE翻折成,F为的中点.
(1)求四棱锥的体积;
(2)证明:
(3)求面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,已知

(1)求异面直线夹角的余弦值;
(2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直线与直线所成的角为60°.
(1)求二面角的的余弦值;
(2)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BCD,使得平面BCD平面ABD.

(1)求证:C'D平面ABD;
(2)求直线BD与平面BEC'所成角的正弦值.

查看答案和解析>>

同步练习册答案