精英家教网 > 高中数学 > 题目详情

【题目】已知实数x,y满足x3<y3,则下列不等式中恒成立的是(  )

A. x>(y B. ln(x2+1)>ln(y2+1)

C. D. tanx>tany

【答案】A

【解析】

因为幂函数f(x)=x3是R上的增函数,且f(x)=x3<f(y)=y3,所以得xy,又因为g(x)=(x是R上的减函数,所以g(x)g(y),即(x>(y.

因为幂函数f(x)=x3是R上的增函数,且f(x)=x3<f(y)=y3,所以得x<y,

又因为g(x)=(x是R上的减函数,所以g(x)g(y),即(x>(y,所以A正确;

因为ln(x2+1)>ln(y2+1)x2+1>y2+1x2>y2,所以B也不正确;

因为>00,所以C也不正确;

x=,y=时,tanx=tany=1,所以D也不正确.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点轴的正半轴为极轴建立极坐标系已知曲线的极坐标方程为直线的参数方程为为参数),点的极坐标为设直线与曲线相交于两点

1写出曲线的直角坐标方程和直线的普通方程;

2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】).

(1)求函数的零点;

(2)设均为正整数,且为最简根式,若存在,使得可唯一表示为的形式(),求证:

(3)已知,是否存在,使得

成立,若存在,试求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆O:与坐标轴分别交于A1,A2,B1,B2(如图).

(1)点Q是圆O上除A1,A2外的任意点(如图1),直线A1Q,A2Q与直线交于不同的两点M,N,求线段MN长的最小值;

(2)点P是圆O上除A1,A2,B1,B2外的任意点(如图2),直线B2Px轴于点F,直线A1B2A2P于点E.设A2P的斜率为k,EF的斜率为m,求证:2mk为定值.

(图1) (图2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,DE分别为BCPD的中点,FAB上一点,且.

1)求证:平面PAD

2)求证:平面PAC

3)若二面角60°,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为三角形”数列对于“三角形”数列,如果函数使得仍为一个三角形”数列,则称是数列的“保三角形函数”

1)已知是首项为2,公差为1的等差数列,若是数列的保三角形函数”,求的取值范围;

2)已知数列的首项为2019是数列的前项和,且满足,证明是“三角形”数列;

3)求证:函数是数列1的“保三角形函数”的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程有两个不同的解,则实数的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数aR).

1)讨论yfx)的单调性;

2)若函数fx)有两个不同零点x1x2,求实数a的范围并证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳组的人数

占本组的频率

第一组

120

0.6

第二组

195

P

第三组

100

0.5

第四组

a

0.4

第五组

30

0.3

第六组

15

0.3

1)补全频率分布直方图,并求nap的值;

2)求年龄段人数的中位数和众数;(直接写出结果即可)

3)从岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取3人作为领队,求选取的3名领队中年龄都在岁的概率.

查看答案和解析>>

同步练习册答案