精英家教网 > 高中数学 > 题目详情
已知复数Z=(1+3i)(x-2i)为纯虚数,其中i为虚数单位.则实数x的值为
 
考点:复数的基本概念
专题:数系的扩充和复数
分析:直接由复数代数形式的乘法运算化简复数z,又复数z为纯虚数,则实部为0,虚部不等于0,即可求出实数x的值.
解答: 解:∵Z=(1+3i)(x-2i)=x-2i+3xi-6i2=x+6+(3x-2)i,
又复数z为纯虚数,
x+6=0
3x-2≠0

解得:x=-6.
故答案为:-6.
点评:本题考查了复数的基本概念,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=mx2-m2x-mx+m2
(1)若对于x∈[0,1],f(x)≥0恒成立,求实数m的取值范围.
(2)若对于m∈[0,1],f(x)≥0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列命题中:
①函数f(x)=x+
a
x
(x>0)的最小值为2
a

②已知定义在R上周期为4的函数f(x)满足f(2-x)=f(2+x),则f(x)一定为偶函数;
③定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)=0;
④已知函数f(x)=ax3+bx2+cx+d(d≠0),则a+b+c=0是f(x)有极值的必要不充分条件;
⑤已知函数f(x)=x-sinx,若a+b>0,则f(a)+f(b)>0.
其中正确命题的序号为
 
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0相交于A,B两点,则线段AB的长度等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)已知极坐标的极点在直角坐标系的原点O处,极轴与x轴的正半轴重合,曲线C的参数方程为
x=2cosθ
y=sinθ
,直线l的极坐标方程为ρsin(θ-
π
4
)=
2
,则直线l与曲线C的交点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
cosxsinx+cos2x+cos2x.
(I)求函数f(x)的最小正周期;
(II)在△ABC中,a,b,c分别是角A,B,C的对边,且锐角B满足f(B)=
1
2
,A=
π
4
,b=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列式子:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据以上式子可猜想:13+23+33+…+n3=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义域在(0,+∞)上的单调函数,且对于任意正数x,y有f(xy)=f(x)+f(y),已知f(2)=1.
(1)求f(
1
2
)的值;
(2)一个各项均为正数的数列{an}满足:f(Sn)=f(an)+f(an+1)-1(n∈N*),其中Sn是数列{an}的前n项的和,求数列{an}的通项公式;
(3)在(2)的条件下,是否存在正数M,使
2n•a1•a2…an≥M
2n+1
(2a2-1)
-(2a2-1)…(2an-1)对一切n∈N*成立?若存在,求出M的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-
1
x
的图象按向量
a
=(1,0)平移之后得到的函数图象与函数y=2sinπx(-2≤x≤4)的图象所有交点的橫坐标之和等于(  )
A、2B、4C、6D、8

查看答案和解析>>

同步练习册答案