精英家教网 > 高中数学 > 题目详情
8.执行右边的程序框图,若输入?=0.01,则输出的e精确到?的近似值为(  )
A.2.69B.2.70C.2.71D.2.72

分析 模拟程序的运行,依次写出每次循环得到的e,n的值,当n=5时满足条件退出循环,输出e的值即可得解.

解答 解:模拟程序的运行,可得
?=0.01,e=1,n=1
执行循环体,e=2,n=2
不满足条件$\frac{1}{n!}$<?,执行循环体,e=2+0.5=2.5,n=3
不满足条件$\frac{1}{n!}$<?,执行循环体,e=2.5+$\frac{1}{6}$,n=4
不满足条件$\frac{1}{n!}$<?,执行循环体,e=2.5+$\frac{1}{6}$+$\frac{1}{24}$,n=5
由于$\frac{1}{5!}$≈0.008<?=0.01,满足条件$\frac{1}{n!}$<?,退出循环,输出e的值为2.5+$\frac{1}{6}$+$\frac{1}{24}$=2.71.
故选:C.

点评 本题考查的知识点是程序框图,在写程序的运行结果时,我们常使用模拟循环的变法,但程序的循环体中变量比较多时,要用表格法对数据进行管理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知△ABC中,若AB=3,AC=4,$\overrightarrow{AB}•\overrightarrow{AC}=6$,则BC=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设随机变量X~N(2,1),则P(|X|<1)=(  )
附:(若随机变量ξ~N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.72%)
A.13.59%B.15.73%C.27.18%D.31.46%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=-2cos2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex[x2-(a+2)x+b],曲线y=f(x)在x=0处的切线方程为2a2x+y-b=0,其中e是自然对数的底数).
(Ⅰ)确定a,b的关系式(用a表示b);
(Ⅱ)对于任意负数a,总存在x>0,使f(x)<M成立,求实数M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足z2=-4,则|1+z|=(  )
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,直线x=a与双曲线M渐近线交于点P,若sin∠PF1F2=$\frac{1}{3}$,则该双曲线的离心率为$\frac{9}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x∈N|,0≤x≤2},B={x∈N|1≤x≤3},则A∪B=(  )
A.{1,2}B.{0,1,2,3}C.{x|1≤x≤2}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.大学生小王自主创业,在乡下承包了一块耕地种植某种水果,每季投入2万元,根据以往的经验,每季收获的此种水果能全部售完,且水果的市场价格和这块地上的产量具有随机性,互不影响,具体情况如表:
水果产量(kg)30004000
概率0.40.6
水果市场价格(元/kg)1620
概率0.50.5
(Ⅰ)设X表示在这块地种植此水果一季的利润,求X的分布列及期望;
(Ⅱ)在销售收入超过5万元的情况下,利润超过5万元的概率.

查看答案和解析>>

同步练习册答案