设为数列的前项和,对任意的,都有为常数,且.
(1)求证:数列是等比数列;
(2)设数列的公比,数列满足,,求数列的通项公式;
(3)在满足(2)的条件下,求数列的前项和.
(1)详见解析;(2);(3)
【解析】
试题分析:(1)用公式将化简可得间的关系,根据等比数列的定义可证得数列是等比数列。(2)属构造法求数列通项公式:因为,所以,将其取倒数可推导出,根据等差数列的定义可知为等差数列,先求的通项公式,再求。(3)因为得通项公式为等差乘以等比数列所以应用错位相减法求数列的前项和。将表示为各项的和,然后将上式两边同时乘以通项公式里边等比数列的公比,但应将第一位空出,然后两式相减即可。
试题解析:(1)证明:当时,,解得. 1分
当时,.即 2分
∵为常数,且, ∴. 3分
∴数列是首项为1,公比为的等比数列. 4分
(2)【解析】
由(1)得,,.
∵, ∴,即. 7分
∴是首项为,公差为1的等差数列. 8分
∴,即(). 9分
(3)【解析】
由(2)知,则. 10分
所以,
即, ①
则 ②
②-①得,
. 14分
考点:1等比数列的定义;2等差数列的定义及通项公式;3错位相减法求数列的和。
科目:高中数学 来源:2015届江苏扬州市高二第一学期期末调研考试数学试卷(解析版) 题型:填空题
若是三条互不相同的空间直线,是两个不重合的平面,
则下列命题中为真命题的是 (填所有正确答案的序号).
①若则; ②若则;
③若则; ④若则
查看答案和解析>>
科目:高中数学 来源:2015届广东阳东广雅、阳春实验中学高二上期末文数学卷(解析版) 题型:选择题
已知p:函数f(x)=x2+mx+1有两个零点,q:?x∈R,4x2+4(m-2)x+1>0.若p∧?q为真,则实数m的取值范围为( ).
A.(2,3) B.(-∞,1]∪(2,+∞)
C.(-∞,-2)∪[3,+∞) D.(-∞,-2)∪(1,2]
查看答案和解析>>
科目:高中数学 来源:2015届广东省等七校高二2月联考理科数学试卷(解析版) 题型:选择题
某种商品的广告费支出与销售额(单位:万元)之间有如下对应数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则表中的的值为( )
A.45 B.50 C.55 D.60
查看答案和解析>>
科目:高中数学 来源:2015届广东省等七校高二2月联考文科数学试卷(解析版) 题型:选择题
执行如右图所示的程序框图.则输出的所有点都在函数( )的图象上.
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源:2015届广东汕头金山中学高二上学期期末理科数学试卷(解析版) 题型:选择题
在棱长为1的正方体中,分别为线段上的动点,则的最小值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com