精英家教网 > 高中数学 > 题目详情
11.已知直线l1:y=2x,l2:y=-2x,过点M(-2,0)的直线l分别与直线l1,l2交于A,B,其中点A在第三象限,点B在第二象限,点N(1,0);
(1)若△NAB的面积为16,求直线l的方程;
(2)直线AN交l2于点P,直线BN交l1于点Q,若直线l、PQ的斜率均存在,分别设为k1,k2,判断$\frac{k_1}{k_2}$是否为定值?若为定值,求出该定值;若不为定值,说明理由.

分析 (1)设直线方程为y=k(x+2),与直线l1:y=2x,l2:y=-2x,分别联立,可得A,B的纵坐标,再由△NAB的面积为$\frac{1}{2}$|MN|•(yB-yA)=16,解方程可得k,进而得到所求直线方程;
(2)求得A,B的坐标,设P(a,-2a),Q(b,2b),运用三点共线的条件:斜率相等,求得a,b,再由两点的斜率公式,化简整理,计算即可得到所求定值.

解答 解:(1)设直线方程为y=k(x+2),
与直线l1:y=2x,l2:y=-2x,分别联立,
可得A,B的纵坐标分别为$\frac{4k}{2-k}$,$\frac{4k}{k+2}$,
∵△NAB的面积为16,
∴$\frac{1}{2}$|MN|•(yB-yA)=16,
即$\frac{1}{2}×3×$($\frac{4k}{k+2}$-$\frac{4k}{2-k}$)=16,
解得k=±4,
∴直线l的方程为4x±y+8=0;
(2)由(1)可得A($\frac{2{k}_{1}}{2-{k}_{1}}$,$\frac{4{k}_{1}}{2-{k}_{1}}$),B(-$\frac{2{k}_{1}}{2+{k}_{1}}$,$\frac{4{k}_{1}}{2+{k}_{1}}$),
又N(1,0),设P(a,-2a),Q(b,2b),
由A,N,P共线,可得
$\frac{2a}{1-a}$=$\frac{4{k}_{1}}{3{k}_{1}-2}$,解得a=$\frac{2{k}_{1}}{5{k}_{1}-2}$,
即有P($\frac{2{k}_{1}}{5{k}_{1}-2}$,-$\frac{4{k}_{1}}{5{k}_{1}-2}$),
由B,N,Q共线,可得
$\frac{2b}{b-1}$=$\frac{4{k}_{1}}{-3{k}_{1}-2}$,解得b=$\frac{2{k}_{1}}{5{k}_{1}+2}$,
即有Q($\frac{2{k}_{1}}{5{k}_{1}+2}$,$\frac{4{k}_{1}}{5{k}_{1}+2}$),
则k2=$\frac{\frac{4{k}_{1}}{5{k}_{1}+2}-\frac{-4{k}_{1}}{5{k}_{1}-2}}{\frac{2{k}_{1}}{5{k}_{1}+2}-\frac{2{k}_{1}}{5{k}_{1}-2}}$=-5k1
即有$\frac{k_1}{k_2}$为定值-$\frac{1}{5}$.

点评 本题考查直线方程的求法,注意运用待定系数法,考查直线交点问题注意联立方程,考查三点共线的条件:斜率相等,以及斜率公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知两条直线y=ax-2和y=2x+1互相垂直,则a=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线y=$\frac{{x}^{2}}{4}$-lnx的一条切线的斜率为-$\frac{1}{2}$,则切点的坐标为$({1,\frac{1}{4}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在△ABC中,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,已知点P,Q分别为线段CA,CB(不含端点)上的动点,PQ与CG交于H,且H为线段CG中点,若$\overrightarrow{CP}$=m$\overrightarrow{a}$,$\overrightarrow{CQ}$=n$\overrightarrow{b}$,则$\frac{1}{m}$+$\frac{1}{n}$=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.定义:记min{x1,x2,…,xn}为x1,x2,…,xn这n个实数中的最小值,记max{x1,x2,…,xn}为x1,x2,…,xn这n个实数中的最大值,例如:min{3,-2,0}=-2.
(1)求证:min{x2+y2,xy}=xy;
(2)已知f(x)=max{|x|,2x+3}(x∈R),求f(x)的最小值;
(3)若H=max{$\frac{1}{{\sqrt{x}}}$,$\frac{x+y}{{\sqrt{xy}}}$,$\frac{1}{{\sqrt{y}}}}$}(x,y∈R+),求H的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则 x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”.
B.“x=1”是“x2-3x+2=0”的充分必要条件.
C.命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”是真命题
D.若¬(p∧q)为真命题,则p、q至少有一个为假命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线C1:$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=6+\sqrt{2}sinθ\end{array}\right.$,(θ为参数),曲线C2:$\frac{x^2}{10}+{y^2}=1$.
(1)写出曲线C1的普通方程,曲线C2的参数方程;
(2)在曲线C1,C2上分别取点P,Q,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.平面向量$\overrightarrow{OA}$⊥$\overrightarrow{AB}$,|$\overrightarrow{OA}$|=2,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,长方体ABCD-A1B1C1D1中,D1D=DC=4,AD=2,E为D1C的中点.
(1)求三棱锥D1-ADE的体积.
(2)AC边上是否存在一点M,使得D1A∥平面MDE?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案