精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,底面ABCD为边长为4的正方形,PA⊥平面ABCD,E为PB中点,PB=4
2

(Ⅰ)求证:PD面ACE;
(Ⅱ)求三棱锥D-AEC的体积.
(I)证明:连接BD,交AC于F,连接EF.
∵四边形ABCD为正方形
∴F为BD的中点
∵E为PB的中点,
∴EFPD
又∵PD?面ACE,EF?面ACE,
∴PD平面ACE.
(Ⅱ)取AB中点为G,连接EG
∵E为PB的中点,
∴EGPA
∵PA⊥平面ABCD,
∴EG⊥平面ABCD,
即EG是三棱锥E-ADC的高,
在Rt△PAB中,PB=4
2
,AB=4,则PA=4,EG=2,
∴三棱锥D-AEC的体积为
1
3
×
1
2
×4×4×2=
16
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

三棱锥D-ABC及其三视图中的主视图和左视图如图所示,则棱BD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD为直角梯形,PA⊥底面ABCD其中AB⊥AD,CD⊥AD,CD=AD=PA=2AB,E是PC中点.
(1)求证:BE平面PAD;
(2)求异面直线PD与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图甲,在等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC上的点,AF与DE交于点G,将△ABF沿AF折起,得到如图乙所示的三棱锥A-BCF,证明:DE平面BCF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥面ABCD,AP=AB=2,BC=2
2
,E、F分别是AD、PC的中点.
(1)求证:EF面PAB;
(2)求EF与面ABCD所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正四面体PABC中,D,E,F分别是棱AB,BC,CA的中点.给出下面四个结论:
①BC平面PDF;②DF⊥平面PAE;③平面PDF⊥平面ABC;④平面PAE⊥平面ABC,
其中所有不正确的结论的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,与平面AA1D1D平行的平面是______;与平面A1B1C1D1平行的平面是______,与平面BDD1B1平行的棱有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中点,F是AB的中点.
(1)求证:BE平面PDF;
(2)求证:平面PDF⊥平面PAB;
(3)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

α、β是两个不重合的平面,在下列条件下,可判定αβ的是(  )
A.α、β都平行于直线l、m
B.α内有三个不共线的点到β的距离相等
C.l、m是α内的两条直线且lβ,mβ
D.l、m是两条异面直线且lα,mα,lβ,mβ

查看答案和解析>>

同步练习册答案