【题目】如图是正方体的平面展开图,在这个正方体中
(1)BM与ED平行 (2)CN与BE是异面直线
(3)CN与BM成60° (4)DM与BN垂直
以上四个命题中,正确命题的序号是( )
A. (1)(2)(3) B. (2)(4) C. (3)(4) D. (2)(3)(4)
【答案】C
【解析】
先利用正方体纸盒的展开图,画出它的直观图,特别注意特殊点的位置,再在正方体中证明线线位置关系以及求异面直线所成的角即可.
由已知正方体的平面展开图,得到正方体的直观图,如图所示:
由正方体的几何特征得:
(1)BM与ED是相对两个平行平面的两条异面的对角线,∴(1)不正确;
(2)CN与BE是相对两个平行平面的两条平行的对角线,∴(2)不正确;
(3)由②知CN//BE,∠EBM即为CN与BM所成角,又三角形EBM为等边三角形,所以∠EBM =60°,∴(3)正确;
(4)因为DM⊥NC,DM⊥BC,NC∩BC=C,所以DM⊥平面NCB,(4)正确;
综上,正确的命题是(3)(4);
故选:C.
科目:高中数学 来源: 题型:
【题目】2012年中华人民共和国环境保护部批准《环境空气质量标准》为国家环境质量标准,该标准增设和调整了颗粒物、二氧化氮、铅、笨等的浓度限值,并从2016年1月1日起在全国实施.空气质量的好坏由空气质量指数确定,空气质量指数越高,代表空气污染越严重,某市对市辖的某两个区加大了对空气质量的治理力度,从2015年11月1日起监测了100天的空气质量指数,并按照空气质量指数划分为:指标小于或等于115为通过,并引进项目投资.大于115为未通过,并进行治理.现统计如下.
空气质量指数 | (0,35] | [35,75] | (75,115] | (115,150] | (150,250] | >250 |
空气质量类别 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲区天数 | 13 | 20 | 42 | 20 | 3 | 2 |
乙区天数 | 8 | 32 | 40 | 16 | 2 | 2 |
(1)以频率值作为概率值,求甲区和乙区通过监测的概率;
(2)对于甲区,若通过,引进项目可增加税收40(百万元),若没通过监测,则治理花费5(百万元);对于乙,若通过,引进项目可增加税收50(百万元),若没通过监测,则治理花费10(百万元)..在(1)的前提下,记X为通过监测,引进项目增加的税收总额,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数满足:在区间内有且仅有一个实数,使得成立,则称函数具有性质M.
判断函数是否具有性质M,说明理由;
若函数具有性质M,求实数a的取值范围;
若函数具有性质M,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若正数 , 满足 ,则 的最小值为( )
A. B. C. D.
【答案】A
【解析】正数 , 满足,则,
故答案为:A.
点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中。
【题型】单选题
【结束】
12
【题目】已知数列 为等差数列,若 ,且它的前 项和 有最大值,则使得 的 的最大值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
(Ⅰ)将y表示为x的函数;
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,分别过A、B两点作准线的垂线,垂足分别为A′、B′两点,以线段A′B′为直径的圆C过点(﹣2,3),则圆C的方程为( )
A.(x+1)2+(y﹣2)2=2
B.(x+1)2+(y﹣1)2=5
C.(x+1)2+(y+1)2=17
D.(x+1)2+(y+2)2=26
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com