精英家教网 > 高中数学 > 题目详情

已知函数数学公式,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性;
(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.

解:(1)当m=2时,
(x>0)
令f'(x)<0,可得或x>2;令f'(x)>0,可得
∴f(x)在和(2,+∞)上单调递减,在单调递减

(2)(x>0,m>0)
①当0<m<1时,则,故x∈(0,m)∪时,f′(x)<0;x∈(m,)时,f'(x)>0
此时f(x)在(0,m),上单调递减,在(m,)单调递增;
②当m=1时,则,故x∈(0,1),有恒成立,
此时f(x)在(0,1)上单调递减;
③当m>1时,则
∪(m,1)时,f'(x)<0;时,f'(x)>0
此时f(x)在,(m,1)上单调递减,在单调递增
(3)由题意,可得f′(x1)=f′(x2)(x1,x2>0,且x1≠x2
?
∵x1≠x2,由不等式性质可得恒成立,又x1,x2,m>0
?对m∈[3,+∞)恒成立
,则对m∈[3,+∞)恒成立
∴g(m)在[3,+∞)上单调递增,∴

从而“对m∈[3,+∞)恒成立”等价于“
∴x1+x2的取值范围为
分析:(1)利用导数,我们可以确定函数的单调性,这样就可求f(x)的极大值;
(2)求导数,再进行类讨论,利用导数的正负,确定函数的单调性;
(3)曲线y=f(x)在点P、Q处的切线互相平行,意味着导数值相等,由此作为解题的突破口即可.
点评:运用导数,我们可解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年广东省佛山市高三第二次月考理科数学试卷(解析版) 题型:解答题

已知函数,(其中常数).

(1)当时,求的极大值;

(2)试讨论在区间上的单调性;

(3)当时,曲线上总存在相异两点,使得曲线

在点处的切线互相平行,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省泉州四校高三第二次联考考试文科数学 题型:解答题

(本题满分14分)已知函数,(其中常数

(1)当时,求的极大值;

(2)试讨论在区间上的单调性;

(3)当时,曲线上总存在相异两点,使得曲线在点处的切线互相平行,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省晋江市四校高三第二次联合考试文科数学试卷 题型:解答题

已知函数,(其中常数

(1)当时,求的极大值;

(2)试讨论在区间上的单调性;

(3)当时,曲线上总存在相异两点,使得曲线在点处的切线互相平行,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山西省太原五中高三(上)12月月考数学试卷(文科)(解析版) 题型:解答题

已知函数,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性;
(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年湖南省湘潭市高考数学三模试卷(文科)(解析版) 题型:解答题

已知函数,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性;
(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

同步练习册答案