【题目】已知四棱锥的底面为直角梯形,,底面,且,是的中点.
(1)证明:面面;
(2)求直线与所成角的余弦值;
(3)求二面角的余弦值.
【答案】(1)详见解析;(2);(3).
【解析】
试题分析:(1)根据面面垂直的判定定理,要证明面面垂直,先证明线面垂直,根据垂直关系,可证明平面;(2)几何法求异面直线所成的角,通过平移直线,将异面直线转化为相交直线所成的角,取中点,中点,连结,则,长至点,使得,连结,则,所以或其补角为直线与所成的角,在三角形内,根据余弦定理求角;(3)因为H和全等,过点作,连结,所以,故为二面角的平面角,同样根据余弦定理求解;或是根据向量法求后两问.
试题解析:(1)因为且,所以
因为面,所以,
而,所以面,又面,所以面面
方法一:(2)取中点,中点,连结,则,且。延长至点,使得,连结,则,且,所以或其补角为直线与所成的角。易得,,,所以,故所求直线与所成角的余弦值为
(3)过点作,连结,因为,,是和公共边,所以,故为二面角的平面角,易得,而,所以,所以所以所求的二面角的余弦值为。
方法二:(2)以为轴,为轴,为轴建立空间直角坐标系,则,,,,, 则,于是,,故,故所求直线与所成角的余弦值为
(3)由(2)知,,,
设面的一个法向量为,由且,得,则,取,则,故
设面的一个法向量为,由且,得,则,取,则,故
所以
由图可知,此二面角为钝二面角,所以所求的二面角的余弦值为
科目:高中数学 来源: 题型:
【题目】圆x2+y2+2x=0和x2+y2﹣4y=0的公共弦所在直线方程为( )
A.x﹣2y=0 B.x+2y=0 C.2x﹣y=0 D.2x+y=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,设为椭圆上一点,且 .
(Ⅰ)求;
(Ⅱ)若,,是否存在以为直角顶点的内接于椭圆的等腰直角三角形?若存在,请求出共有几个?若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图2所示的三棱锥,其中.
(1) 证明://平面;
(2) 证明:平面;
(3) 当时,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3 cm,高为4 cm,圆锥的高为3 cm,画出此几何体的直观图.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com