精英家教网 > 高中数学 > 题目详情

【题目】已知定义在(0, )上的函数f(x),f'(x)为其导数,且 恒成立,则(
A. f( )> f(
B. f( )>f( )??
C.f(1)<2f( )sin1
D. f( )<f(

【答案】D
【解析】解:当x∈(0, )时,sinx>0,cosx>0,
恒成立,
∴sinxf′(x)﹣cosxf(x)>0恒成立,
令g(x)= ,则g′(x)= >0恒成立,
即g(x)= ,x∈(0, )为增函数,
故g( )>g( ),
f( )<f( ),
故D正确;
故选:D
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每100颗种子浸泡后的发芽数,得到如下表格:

日期

41

47

415

421

430

温差x/oC

10

11

13

12

8

发芽数y/

23

25

30

26

16

(1)从这5天中任选2,若选取的是41日与430日的两组数据,请根据这5天中的另3天的数据,求出关于的线性回归方程

(2)若由线性回归方程得到的估计数据与所选出的两组检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠.

(参考公式,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成,它们的圆心分别为O,O1 , O2 . 动点P从A点出发沿着圆弧按A→O→B→C→A→D→B的路线运动(其中A,O1 , O,O2 , B五点共线),记点P运动的路程为x,设y=|O1P|2 , y与x的函数关系为y=f(x),则y=f(x)的大致图象是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图可能是下列哪个函数的图象(

A.y=2x﹣x2﹣1
B.y=
C.y=(x2﹣2x)ex
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列结论:

(1)命题 为真命题

(2)设,则 p q 的充分不必要条件

(3)命题:若,则,其否命题是假命题;

(4)非零向量满足,则的夹角为.

其中正确的结论有(

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量 =(cosA,cosB), =(a,2c﹣b),
(1)求角A的大小;
(2)若a=2 ,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有2名男生、3名女生,在下列不同条件下,求不同的排列方法总数.

(1)全体站成一排,甲不站排头也不站排尾;

(2)全体站成一排,女生必须站在一起;

(3)全体站成一排,男生互不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别是a,b,c,且 acosC=(2b﹣ c)cosA.
(1)求角A的大小;
(2)求cos( ﹣B)﹣2sin2 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的两个焦点坐标分别为F1(-,0)F2(,0),且椭圆过点

(1)求椭圆方程;

(2)过点作不与y轴垂直的直线l交该椭圆于MN两点,A为椭圆的左顶点,证明

查看答案和解析>>

同步练习册答案