2013年某工厂生产某种产品,每日的成本(单位:万元)与日产量
(单位:吨)满足函数关系式
,每日的销售额
(单位:万元)与日产量
的函数关系式
已知每日的利润,且当
时,
.
(1)求的值;
(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.
科目:高中数学 来源: 题型:解答题
江苏某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为
平方米,且高度不低于
米,设防洪堤横断面的腰长为
米,外周长(梯形的上底线段BC与两腰长的和)为
米.
(1)求关于
的函数关系式,并指出其定义域;
(2)要使防洪提的横断面的外周长不超过10.5米,则其腰长应在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,,
是某地一个湖泊的两条互相垂直的湖堤,线段
和曲线段
分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥
上某点
分别修建与
,
平行的栈桥
、
,且以
、
为边建一个跨越水面的三角形观光平台
.建立如图2所示的直角坐标系,测得线段
的方程是
,曲线段
的方程是
,设点
的坐标为
,记
.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度)
(1)求的取值范围;
(2)试写出三角形观光平台面积
关于
的函数解析式,并求出该面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度
(千米/小时)的函数解析式可以表示为:
已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数.
(1)若,试判断函数
零点个数;
(2)是否存在,使
同时满足以下条件
①对任意,且
;
②对任意,都有
。若存在,求出
的值,若不存在,请说明理由。
(3)若对任意且
,
,试证明存在
,
使成立。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设二次函数满足下列条件:①当
时,
的最小值为
,且图像关于直线
对称;②当
时,
恒成立.
(1)求的值;
(2)求的解析式;
(3)若在区间
上恒有
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com