精英家教网 > 高中数学 > 题目详情

向量,则                                             (     )

(A)                              (B) 

(C)的夹角为60°        (D)的夹角为30°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P={
a
|
a
=(1,0)+m(0,1),m∈R},Q={
b
|
b
=(1,1)+n(-1,1),n∈R}是两个向量集合,则P∩Q=(  )
A、{(1,1)}
B、{(-1,1)}
C、{(1,0)}
D、{(0,1)}

查看答案和解析>>

科目:高中数学 来源: 题型:

设O为坐标原点,向量
OA
=(1,2)
.将
OA
绕着点O按逆时针方向旋转90°得到向量
OB
,则2
OA
+
OB
的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面斜坐标系xoy中,∠xoy=60°,平面上任一点P关于斜坐标系的斜坐标这样定义的,若
OP
=xe1+ye2(其中e1,e2分别是与x轴y轴同方向的单位向量),则P点的斜坐标为(x,y),则以O为圆心,1为半径的圆在斜坐标系下的方程为(  )
A、x2+y2=1
B、x2+y2+xy=1
C、x2+y2-xy=1
D、x2+y2+2xy=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P={
a
|
a
=(1,0)+m(0,1),m∈R},Q={
b
|
b
=(1,1)+n(-1,1),n∈R}是两个向量集合,则P∩Q=
{(1,1)}
{(1,1)}

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).请按照要求完成下列各题,并将答案填在答题纸的指定位置上.
(1)可考虑利用算法来求am,bm的值,其中m为给定的数据(m≥2,m∈N).右图算法中,虚线框中所缺的流程,可以为下面A、B、C、D中的
ACD
ACD

(请填出全部答案)
A、B、
C、D、

(2)我们可证明当a≠b,5a≠4b时,{an-bn}及{5an-4bn}均为等比数列,请按答纸题要求,完成一个问题证明,并填空.
证明:{an-bn}是等比数列,过程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0为首项,以
3
3
为公比的等比数列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0为首项,以
2
2
为公比的等比数列
(3)若将an,bn写成列向量形式,则存在矩阵A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,请回答下面问题:
①写出矩阵A=
-24
-57
-24
-57
;  ②若矩阵Bn=A+A2+A3+…+An,矩阵Cn=PBnQ,其中矩阵Cn只有一个元素,且该元素为Bn中所有元素的和,请写出满足要求的一组P,Q:
P=
1 
1 
Q=
1
1
P=
1 
1 
Q=
1
1
; ③矩阵Cn中的唯一元素是
2n+2-4
2n+2-4

计算过程如下:

查看答案和解析>>

同步练习册答案