精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和Sn
(1)求an及Sn
(2)令bn= (n∈N*),求数列{bn}的前n项和Tn

【答案】
(1)解:设等差数列{an}的公差为d,∵a3=7,a5+a7=26,

,解得a1=3,d=2.

∴an=3+2(n﹣1)=2n+1.

∴数列{an}的前n项和Sn= =n2+2n.


(2)解:bn= = =

∴数列{bn}的前n项和Tn= + +…+ = =


【解析】(1)设等差数列{an}的公差为d,由a3=7,a5+a7=26,可得 ,解出利用等差数列的前n项和公式即可得出;(2)bn= = = ,利用“裂项求和”即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.

A.选修4—1:几何证明选讲

如图,△ABC的顶点AC在圆O上,B在圆外,线段AB与圆O交于点M

(1)若BC是圆O的切线,且AB=8,BC=4,求线段AM的长度;

(2)若线段BC与圆O交于另一点N,且AB=2AC,求证:BN=2MN

B.选修4—2:矩阵与变换

ab∈R.若直线laxy-7=0在矩阵A= 对应的变换作用下,得到的直线为l:9xy-91=0.求实数ab的值.

C.选修4—4:坐标系与参数方程

在平面直角坐标系xOy中,直线l (t为参数),与曲线C (k为参数)交于AB两点,求线段AB的长.

D.选修4—5:不等式选讲

ab,求证:a4+6a2b2b4>4ab(a2b2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知 a>0 且 a≠1,若函数f(x)=loga(x﹣1),g(x)=loga(5﹣x).
(1)求函数h(x)=f(x)﹣g(x)的定义域;
(2)讨论不等式f(x)≥g(x)成立时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意实数x,符号[x]表示不超过x的最大整数,如[2.2]=2,[﹣3.5]=﹣4,设数列{an}的通项公式为an=[log21]+[log22]+[log23]+…[log2(2n﹣1)].
(1)求a1a2a3的值;
(2)是否存在实数a,使得an=(n﹣2)2n+a(n∈N*),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生产甲乙两种精密电子产品,用以下两种方案分别生产出甲乙产品共种,现对这两种方案生产的产品分别随机调查了各次,得到如下统计表:

①生产件甲产品和件乙产品

正次品

甲正品

甲正品

乙正品

甲正品

甲正品

乙次品

甲正品

甲次品

乙正品

甲正品

甲次品

乙次品

甲次品

甲次品

乙正品

甲次品

甲次品

乙次品

频 数

②生产件甲产品和件乙产品

正次品

乙正品

乙正品

甲正品

乙正品

乙正品

甲次品

乙正品

乙次品

甲正品

乙正品

乙次品

甲次品

乙次品

乙次品

甲正品

乙次品

乙次品

甲次品

频 数

已知生产电子产品甲件,若为正品可盈利元,若为次品则亏损元;生产电子产品乙件,若为正品可盈利元,若为次品则亏损元.

(I)按方案①生产件甲产品和件乙产品,求这件产品平均利润的估计值;

(II)从方案①②中选其一,生产甲乙产品共件,欲使件产品所得总利润大于元的机会多,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣kx,x∈R(e是自然对数的底数).
(1)若k∈R,求函数f(x)的单调区间;
(2)若k>0,讨论函数f(x)在(﹣∞,4]上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x+2y+m=0与y轴交于A,B两点,且∠ACB=90°(C为圆心),过点P(0,2)且斜率为k的直线与圆C相交于M,N两点.
(1)求实数m的值;
(2)若|MN|≥4,求k的取值范围;
(3)若向量 与向量 共线(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中放有大小和形状相同的四个小球,它们的标号分别为1、2、3、4,现从袋中不放回地随机抽取两个小球,记第一次取出的小球的标号为a,第二次取出的小球的标号为b,记事件A为“a+b≥6“.
(1)列举出所有的基本事件(a,b),并求事件A的概率P(A);
(2)在区间[0,2]内任取两个实数x,y,求事件“x2+y2≥12P(A)“的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,在以极点为直角坐标原点,极轴为轴的正半轴建立的平面直角坐标系中,直线的参数方程为为参数).

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)在平面直角坐标系中,设曲线经过伸缩变换 得到曲线,若为曲线上任意一点,求点到直线的最小距离.

查看答案和解析>>

同步练习册答案