精英家教网 > 高中数学 > 题目详情

【题目】某校兴趣小组在如图所示的矩形区域内举行机器人拦截挑战赛,在处按方向释放机器人甲,同时在处按某方向释放机器人乙,设机器人乙在处成功拦截机器人甲.若点在矩形区域内(包含边界),则挑战成功,否则挑战失败.已知米,中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记的夹角为

1)若足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到);

2)如何设计矩形区域的宽的长度,才能确保无论的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域内成功拦截机器人甲?

【答案】(1)按照与夹角为的向量方向释放机器人乙;(2)

【解析】

1)利用正弦定理,即可求解;

2)以所在直线为轴,中垂线为轴,建平面直角坐标系,求出的轨迹方程,即可得出结论.

1中,,,

由正弦定理,得:,

所以,所以.

所以应在矩形区域内,按照与夹角为

的向量方向释放机器人乙,才能挑战成功.

2)以所在直线为轴,中垂线为轴,

建平面直角坐标系,设由题意,

,所以,

所以

即点的轨迹是以为圆心,6为半

径的上半圆在矩形区域内的部分.

所以当米时,能确保无论的值为多少,

总可以通过设置机器人乙的释放角度使机器人

乙在矩形区域内成功拦截机器人甲.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019625日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如表所示:

得分

频数

25

150

200

250

225

100

50

1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:

①得分不低于 “的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

②每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①;②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轴上动点引抛物线的两条切线,其中为切线.

1)若切线的斜率分别为,求证:为定值,并求出定值;

2)当最小时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 mn 是两条不同的直线,αβγ是三个不同的平面,下列命题中正确的是(

A.αβ βγ ,则αγ

B. mn ,则αβ

C. mn 是异面直线, mβ nα ,则αβ

D.平面α内有不共线的三点到平面 β的距离相等,则αβ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间(分钟)和答对人数的统计表格如下:

时间(分钟)

10

20

30

40

50

60

70

80

90

100

答对人数

98

70

52

36

30

20

15

11

5

5

1.99

1.85

1.72

1.56

1.48

1.30

1.18

1.04

0.7

0.7

时间与答对人数的散点图如图:

附:,对于一组数据……,其回归直线的斜率和截距的最小二乘估计分别为:.请根据表格数据回答下列问题:

1)根据散点图判断,,哪个更适宣作为线性回归类型?(给出判断即可,不必说明理由)

2)根据(1)的判断结果,建立的回归方程;(数据保留3位有效数字)

3)根据(2)请估算要想记住的内容,至多间隔多少分钟重新记忆一遍.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有如下问题:今有蒲生一日,长四尺,莞生一日,长一尺.蒲生日自半,莞生日自倍.意思是:今有蒲第一天长高四尺,莞第一天长高一尺,以后蒲每天长高前一天的一半,莞每天长高前一天的两倍.请问第几天,莞的长度是蒲的长度的4倍(

A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按照干支顺序相配,构成了“干支纪年法”,其相配顺序为:甲子、乙丑、丙寅癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60为一个周期,周而复始,循环记录.按照“干支纪年法”,中华人民共和国成立的那年为己丑年,则2013年为(

A.甲巳年B.壬辰年C.癸巳年D.辛卯年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率,椭圆C上的点到其左焦点的最大距离为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点A作直线与椭圆相交于点B,则轴上是否存在点P,使得线段,且?若存在,求出点P坐标;否则请说明理由.

查看答案和解析>>

同步练习册答案