精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

极坐标系与直角坐标系有相同的长度单位,以坐标原点为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线与曲线分别交异于极点的四点.

(1)若曲线关于曲线对称,求的值,并把曲线化成直角坐标方程;

(2)求的值.

【答案】(1) ,,.

(2) .

【解析】

(1)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.

(2)由题意可得,|OA||OB||OC||OD|,代入利用和差公式即可得出.

(1)

化为直角坐标方程为.

的方程化为直角坐标方程为,因为曲线关于曲线对称,故直线经过圆心

解得,故的直角坐标方程为.

(2)由题意可得,

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)若函数处取得极值,求实数的值;

(2)(1)的结论下,若关于的不等式时恒成立的值

(3)令若关于的方程内至少有两个解,求出实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)求的最小正周期和单调增区间

2)求图象的对称轴的方程和对称中心的坐标

3)在给出的直角坐标系中,请画出在区间上的图象并求其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的值为( )

A. 2 B. C. D. -1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为集合.

1)若,求的取值范围;

2)若存在两个不相等负实数,使得,求实数的取值范围;

3)是否存在实数,满足对于任意,都有;对于任意的.都有,若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数

(1)证明:

(2)若不等式的解集是非空集,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,动点P与两定点A-20),B20)连线的斜率之积为-,记点P的轨迹为曲线C

I)求曲线C的方程;

II)若过点(-0)的直线l与曲线C交于MN两点,曲线C上是否存在点E使得四边形OMEN为平行四边形?若存在,求直线l的方程,若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义域为的奇函数,且当时, ,设”.

(1)若为真,求实数的取值范围;

(2)设集合与集合的交集为,若为假, 为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.

1)求PX=2);

2)求事件X=4且甲获胜的概率.

查看答案和解析>>

同步练习册答案