精英家教网 > 高中数学 > 题目详情
已知随机变量ξ~N(0,σ2),若P(-2≤ξ≤0)=0.2,则P(ξ≥2)等于
 
考点:正态分布曲线的特点及曲线所表示的意义
专题:计算题,概率与统计
分析:本题考查正态分布曲线的性质,随机变量ξ服从正态分布N(0,σ2),由此知曲线的对称轴为Y轴,利用P(ξ≥2)=
1
2
[1-P(-2≤ξ≤2)],即可得出结论.
解答: 解:∵随机变量ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0.2,
∴P(-2≤ξ≤2)=0.4
∴P(ξ≥2)=
1
2
[1-P(-2≤ξ≤2)]=0.3.
故答案为:0.3.
点评:本题考查正态分布曲线的重点及曲线所表示的意义,解题的关键是正确正态分布曲线的重点及曲线所表示的意义,由曲线的对称性求出概率,本题是一个数形结合的题,识图很重要.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=x-
3
x
在P(x0,y0)处的切线于y轴以及直线y=x所围成的三角形的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:质数序列2,3,5,7,11,13,17,19…是无限的.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=(2n-1)•2n,我们用错位相减法求其前n项和Sn,有Sn=1×2+3×22+5×23+…+(2n-1)•2n
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输出值x∈(16,25),则输入x值可以是(  )
A、0B、2C、4D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2cos(
π
2
+x),-1),
OQ
=(-sin(
π
2
-x),cos2x),f(x)=
OP
.
OQ
.若a,b,c分别是锐角△ABC中角A,B,C的对边,且满足f(A)=1,b+c=5+3
2
.a=
13
,则△ABC的面积为
 
.•

查看答案和解析>>

科目:高中数学 来源: 题型:

由不等式组
x≥0
y≥-1
x+y≤1
确定的平面区域记为Ω1,曲线y=x2-l(x≥0)与坐标轴所围成的平面区域记为Ω2.在Ω1中随机取一点,则该点恰好在Ω2内的概率为(  )
A、
1
3
B、
2
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线C1:ρ=2cosθ与曲线C2:y(y-mx-m)=0有4个不同的交点,则实数m的取值范围是(  )
A、(-
3
3
3
3
B、(-
3
3
,0)∪(0,
3
3
C、[-
3
3
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a,b满足a+2b=2,则3a+9b的最小值是(  )
A、6
B、12
C、2
3
D、4
3

查看答案和解析>>

同步练习册答案