精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣0.5x+1,则不等式f(2x﹣3)<0.5的解集为(
A.{x|﹣1<x<1.5}
B.{x|0.5<x<2}
C.{x|x<2}
D.{x|1.5<x<2}

【答案】D
【解析】解:∵y=lnx 和y=﹣0.5x在它们的定义域内都是增函数,故函数f(x)=lnx﹣0.5x+1在它的定义域(0,+∞)上单调递增,

由于f(1)=0﹣0.5+1=0.5,故当x>1时,f(x)>0.5.

则不等式f(2x﹣3)<0.5,即2x﹣3<1 且2x﹣3>0,即 <x<2,

故选:D.

【考点精析】关于本题考查的函数单调性的性质,需要了解函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若函数F(x)= +ax2 上为减函数,求 的取值范围;
(2)当 时, ,当 时,方程 - =0有两个不等的实根,求实数 的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.

日需求量n

14

15

16

17

18

19

20

  

10

20

16

16

15

13

10

(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;

(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018海南高三阶段性测试(二模)如图,在直三棱柱中, ,点的中点,点上一动点.

I)是否存在一点,使得线段平面?若存在,指出点的位置,若不存在,请说明理由.

II)若点的中点且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则

 (  )

A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.

(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;

(2)请你估算该年级学生成绩的中位数;

(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (m,n∈R)在x=1处取得极值2.
(1)求f(x)的解析式;
(2)k为何值时,方程f(x)﹣k=0只有1个根
(3)设函数g(x)=x2﹣2ax+a,若对于任意x1∈R,总存在x2∈[﹣1,0],使得g(x2)≤f(x1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 (本小题满分12分)为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午800~1200间各自的车流量(单位:百辆),得如图所示的统计图,试求:

(1)甲、乙两个交通站的车流量的极差分别是多少?

(2)甲交通站的车流量在间的频率是多少?

(3)根据该茎叶图结合所学统计知识分析甲、乙两个交通站哪个站更繁忙?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法不正确的是(
A.若“p且q”为假,则p,q至少有一个是假命题
B.命题“x∈R,x2﹣x﹣1<0”的否定是““x∈R,x2﹣x﹣1≥0”
C.当a<0时,幂函数y=xa在(0,+∞)上单调递减
D.“φ= ”是“y=sin(2x+φ)为偶函数”的充要条件

查看答案和解析>>

同步练习册答案