精英家教网 > 高中数学 > 题目详情

【题目】某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.

分数区间

甲班频率

乙班频率

[0,30)

0.1

0.2

[30,60)

0.2

0.2

[60,90)

0.3

0.3

[90,120)

0.2

0.2

[120,150]

0.2

0.1

优秀

不优秀

总计

甲班

乙班

总计

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;
(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?

【答案】解:(Ⅰ)乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.

成绩优秀的记为A、B.

从这六名学生随机抽取两名的基本事件有:

{A,B},{A,C},{A,D},{A,E},{A,F},

{B,C},{B,D},{B,E},{B,F},{C,D},

{C,E},{C,F},{D,E},{D,F},{E,F}共15个,

设事件G表示恰有一位学生成绩优秀,符合要求的事件有:

{A,C},{A,D},{A,E},{A,F},

{B,C},{B,D},{B,E},{B,F}共8个,

(Ⅱ)

优秀

不优秀

总计

甲班

4

16

20

乙班

2

18

20

总计

6

34

40

在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.


【解析】(Ⅰ)由图表得到乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.然后利用枚举法得到从这六名学生随机抽取两名的基本事件个数,进一步得到恰有一位学生成绩优秀的事件个数,由古典概型概率计算公式得答案;(Ⅱ)直接由公式求出K的值,结合图表得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,菱形OBCD的顶点O与坐标原点重合,一边在x轴的正半轴上,已知∠BOD=60°,求菱形各边和两条对角线所在直线的倾斜角及斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量 ξ 的分布列为P(ξ=k)= ( k=1,2,),则 P(2<x≤4)为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足(x﹣3)2<1.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象上所有点的横坐标缩小到原来的(纵坐标不变),再将图象上所有点向右平移个单位,所得函数图象所对应的解析式为__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象经过点,且函数= 是偶函数

(1)的解析式;

(2)已知,求函数的最大值和最小值

(3)函数的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx和g(x)=lnx. (Ⅰ) 若a=b=1,求证:f(x)的图象在g(x)图象的上方;
(Ⅱ) 若f(x)和g(x)的图象有公共点P,且在点P处的切线相同,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图PA⊥平面ABCDABCD是矩形,PA=AB=1AD=,点F是PB的中点,点E在边BC上移动.

1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;

2)证明:无论点E在边BC的何处,都有PE⊥AF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=logax(a>0a≠1)的图象过点(4,2),

(1)a的值.

(2)g(x)=f(1-x)+f(1+x),g(x)的解析式及定义域.

(3)(2)的条件下,g(x)的单调减区间.

查看答案和解析>>

同步练习册答案