精英家教网 > 高中数学 > 题目详情
16.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x-sinx,若不等式f(-4t)>f(2mt2+m)对任意实数t恒成立,则实数m的取值范围是(-∞,-$\sqrt{2}$).

分析 根据函数的单调性问题转化为2mt2+4t+m<0,通过讨论m的范围,得到关于m的不等式,求出m的范围即可.

解答 解:由f(x)=x-sinx,可得f'(x)=1-cosx≥0,
故f(x)在[0,+∞)上单调递增,
再由奇函数的性质可知,f(x)在R上单调递增,
由f(-4t)>f(2mt2+m),
可得-4t>2mt2+m,即2mt2+4t+m<0,
当m=0时,不等式不恒成立;
当m≠0时,根据条件可得$\left\{\begin{array}{l}{m<0}\\{△=16-8{m}^{2}<0}\end{array}\right.$,
解之得m<-$\sqrt{2}$,
综上,m∈(-∞,-$\sqrt{2}$),
故答案为(-∞,-$\sqrt{2}$).

点评 本题考查了函数的单调性问题,考查二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当P沿着A-B-C-M运动时,以点P经过的路程x为自变量,三角形APM的面积为y的函数,则y=f(x)的图象形状大致是下列图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB为圆O的直径,E是圆O上不同于A,B的动点,四边形ABCD为矩形,且AB=2,AD=1,平面ABCD⊥平面ABE.
(1)求证:BE⊥平面DAE;
(2)当平面ABCD与平面CD E所成二面角为30°时,证明△ABE的面积为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且经过点(1,$\frac{3}{2}$)
(1)求椭圆C的方程;
(2)已知A为椭圆C的左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=6,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
(1)求证:平面PAB⊥平面QBC;
(2)求该组合体QPABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$(2x-1){(\frac{1}{x}+x)^6}$在展开式中x3的系数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”.给出下列四条直线:(1)y=x+1;(2)y=2; (3)y=$\frac{4}{3}$x;(4)y=2x+1判断是“B型直线”的是(  )
A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数列-1,a,b,c,-2成等比数列,则abc等于(  )
A.4B.±4C.2$\sqrt{2}$D.-2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等比数列{an}中,公比q=2,a1+a4+a7…+a97=11,则数列{an}的前99项的和S99=77.

查看答案和解析>>

同步练习册答案