精英家教网 > 高中数学 > 题目详情
5.函数y=$\frac{lg(2-x)}{\sqrt{12+x-{x}^{2}}}$+(x-1)-1的定义域是(-3,1)∪(1,2).

分析 根据使函数解析式有意义的原则,构造不等式组,解得函数的定义域.

解答 解:由$\left\{\begin{array}{l}2-x>0\\ 12+x-{x}^{2}>0\\ x-1≠0\end{array}\right.$得:
x∈(-3,1)∪(1,2),
故函数y=$\frac{lg(2-x)}{\sqrt{12+x-{x}^{2}}}$+(x-1)-1的定义域是(-3,1)∪(1,2),
故答案为:(-3,1)∪(1,2)

点评 本题考查的知识点是函数的定义域及其求法,根据已知构造不等式组,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程y=$\sqrt{2}$x,原点到过A(a,0)、B(0,-b)点直线l的距离为$\frac{\sqrt{6}}{3}$.
(1)求双曲线方程;
(2)过点Q(1,1)能否作直线m,使m与已知双曲线交于两点P1,P2,且Q是线段P1P2的中点?若存在,请求出其方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某商品的价格为80元时,月销售量为10000件,若价格每降低2元.需要量就会增加1000件,如果不考虑其他因素:(1)试求这商品的月销售量与价格之间的函数关系式;
(2)若这种商品的进货价是每件40元,销售价为多少元时,月利润收人最多.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=4x+3,g(x)=x2,求满足f[g(x)]=g[f(x)]的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x),φ(x)在x=0某领域内连续,且当x→0时f(x)是φ(x)高阶无穷小,则当x→0时,${∫}_{0}^{x}$f(t)sintdt是${∫}_{0}^{x}$tφ(t)dt的(  )无穷小.
A.低阶B.高阶C.同阶但不等阶D.等阶

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,已知sinA=cosBcosC,则必有(  )
A.sinB+sinC为常数B.cosB+cosC为常数C.tanB+tanC为常数D.sinB+cosC为常数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα=2,且α是第三象限角,求sin(kπ-α)+cos(kπ+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,过正方体ABCD-A1B1C1D1的棱BB1的平面交DD1C1C于EE1.求证:BB1∥EE1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某化工厂打算投入一条新的生产线,但需要经环保部门通过“可持续指数”来进行积累考核.已知该生产线连续生产n年的产量f(n)=$\frac{n(n+1)(n+2)}{3}$吨,每年生产量an的倒数记作该年的“可持续指数”,如果累计“可持续指数”不小于80%,则生产必须停止,则该产品可持续生产3年.

查看答案和解析>>

同步练习册答案