精英家教网 > 高中数学 > 题目详情
若焦距为4的双曲线的两条渐近线互相垂直,则此双曲线的实轴长为(  )
A、4
2
B、2
2
C、4
D、2
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:设出双曲线方程,求出渐近线方程,由垂直的条件可得a=b,由c=2,运用a,b,c的关系,即可得到a,2a.
解答: 解:设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),
则c=2,
渐近线方程为y=±
b
a
x,
即有-
b2
a2
=-1,
即a=b,
c=
a2+b2
=
2
a,
即有a=
2
,2a=2
2

故选B.
点评:本题考查双曲线的方程和性质,考查渐近线方程,两直线垂直的条件,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:在R上定义运算?:x?y=(1-x)y.不等式x?(1-a)x<1对任意实数x恒成立;命题Q:若不等式
x2+ax+6
x+1
≥2对任意的x∈N*恒成立.若P∧Q为假命题,P∨Q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x>0},B={x|
x
x-1
<0},则A∩B等于(  )
A、(0,1)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R)是以4为周期的奇函数,当x∈(0,2)时,f(x)=ln(x2-x+b).若函数f(x)在区间[-2,2]上有5个零点,则实数b的取值范围是(  )
A、-1<b≤1
B、
1
4
≤b≤
5
4
C、-1<b<1或b=
5
4
D、
1
4
<b≤1或b=
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:a2+b2-ab≥a+b-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

自驾游从A地到B地有甲乙两条线路,甲线路是A-C-D-B,乙线路是A-E-F-G-H-B,其中CD段,EF段,GH段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表所示:
堵车时间(小时)频数
[0,1]8
(1,2]6
(2,3]38
(3,4]24
(4,5]24
经调查发现堵车概率x在(
2
3
,1)上变化,y在(0,
1
2
)上变化.在不堵车的状况下,走甲路线需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD段平均堵车时间,调查了100名走甲线路的司机,得到如表数据.
路段         CDEFGH
堵车概率                                                                    xy
1
4
平均堵车时间(小时)                                                             a21
(Ⅰ)根据右表数据画出CD段堵车时间频率分布直方图并求CD段平均堵车时间a的值;
(Ⅱ)若只考虑所花汽油费的期望值大小,为了节约,求选择走甲线路的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1+a2+…+an=
n
2
an+1(n∈N*),数列{bn}为等比数列,a1=b1=2,a2=b2
(Ⅰ)求{an}、{bn}的 通项公式.
(Ⅱ)若对每个正整数k,在bk和bk+1之间插入ak个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ=
1
2
,求θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=cos2x+asinx在区间(
π
6
π
2
)是减函数,则a的取值范围是(  )
A、(2,4)
B、(-∞,2]
C、(-∞,4]
D、[4,+∞)

查看答案和解析>>

同步练习册答案