精英家教网 > 高中数学 > 题目详情

【题目】已知数列的首项,且.

1)证明:是等比数列;

2)若中是否存在连续三项成等差数列?若存在,写出这三项,若不存在,请说明理由;

3)若是递减数列,求的取值范围.

【答案】1)证明见解析;(2)不存在,理由见解析;(3

【解析】

1)利用等比数列的定义即可得证;

2)由等差中项可得,再运算即可得解;

3)由是递减数列,则恒成立,再利用最值法即可得解.

解:(1)由,所以

,所以

故数列是以为首项,2为公比的等比数列;

2)当时,由(1)得

所以

中存在连续三项成等差数列,

,即

化简得:,又 ,即此方程无解,

故不存在连续三项成等差数列;

3)由(1)得

是递减数列,则

恒成立,

恒成立,

又当时,取最小值

,又

的取值范围为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商店销售某海鲜,统计了春节前后50天该海鲜的需求量,单位:公斤),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1公斤可获利50元;若供大于求,剩余的削价处理,每处理1公斤亏损10元;若供不应求,可从其它商店调拨,销售1公斤可获利30元.假设商店每天该海鲜的进货量为14公斤,商店的日利润为元.

(1)求商店日利润关于需求量的函数表达式;

(2)假设同组中的每个数据用该组区间的中点值代替.

①求这50天商店销售该海鲜日利润的平均数;

②估计日利润在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若命题甲是命题乙的充分非必要条件,命题丙是命题乙的必要非充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的(

A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,求函数的极值;

(2)恒成立,求的取值范围;

(3)设函数的极值点为,当变化时,点()构成曲线M.证明:任意过原点的直线,与曲线M均仅有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,为正三角形,且.

(1)证明:直线平面

(2)若四棱锥的体积为是线段的中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的偶函数,对任意都有,当,且时,,给出如下命题:

②直线是函数的图象的一条对称轴;

③函数上为增函数;

④函数上有四个零点.

其中所有正确命题的序号为( )

A. ①② B. ②④ C. ①②③ D. ①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:

针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是( )

A. 获得A等级的人数减少了B. 获得B等级的人数增加了1.5倍

C. 获得D等级的人数减少了一半D. 获得E等级的人数相同

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】瑞士著名数学家欧拉在研究几何时曾定义欧拉三角形,的三个欧拉点(顶点与垂心连线的中点)构成的三角形称为的欧拉三角形.如图,的欧拉三角形(H的垂心).已知,若在内部随机选取一点,则此点取自阴影部分的概率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱底面三角形的周长为6,侧棱长长为3.

(1)求正三棱柱的体积;

(2)求异面直线AB所成角的大小.

查看答案和解析>>

同步练习册答案