【题目】已知函数.若曲线和曲线都过点,且在点处有相同的切线.
(Ⅰ)求的值;
(Ⅱ)若时, ,求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,斜率为1的直线l交椭圆于A、B两点,且线段AB的中点坐标为.
求椭圆的方程;
若P是椭圆与双曲线在第一象限的交点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:PA∥平面BDE;
(2)求证:平面PAC⊥平面BDE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:,,.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,,顶点在底面上的射影恰为点,且
(1)证明:平面平面;
(2)求棱与所成的角的大小;
(3)若点为的中点,并求出二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,梯形ABCD中,AD∥BC,AD=AB=1,AD⊥AB,∠BCD=45°,将△ABD沿对角线BD折起,设折起后点A的位置为A′,使二面角A′—BD—C为直二面角,给出下面四个命题:①A′D⊥BC;②三棱锥A′—BCD的体积为;③CD⊥平面A′BD;④平面A′BC⊥平面A′DC.其中正确命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}满足an+1+an=4n﹣3(n∈N*)
(1)若{an}是等差数列,求其通项公式;
(2)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把电影院的4张电影票随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得4排1号”与事件“乙分得4排1号”是( )
A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案都不对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com