(本小题满分13分)
已知点,,△的周长为6.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设过点的直线与曲线相交于不同的两点,.若点在轴上,且,求点的纵坐标的取值范围.
(1) (2)
【解析】
试题分析:解:(Ⅰ)由题意可知,,
故动点的轨迹是以,为焦点的椭圆. ………………………1分
设其方程为,则,,,. ………………………3分
所以椭圆的方程为 ………………………4分
(Ⅱ)当直线的斜率不存在时,满足条件的点的纵坐标为. ………………………5分
当直线的斜率存在时,设直线的方程为.
联立得,
. . ………………………6分
设,,则.
设的中点为,则,,
所以. ………………………9分
由题意可知,
又直线的垂直平分线的方程为.
令解得. ………………………10分
当时,因为,所以;
当时,因为,所以. ………………………12分
综上所述,点纵坐标的取值范围是. ………………………13分
考点:本试题考查了轨迹方程,直线与圆锥曲线位置关系。
点评:解决这类问题的关键是能利用已知中的条件,结合圆锥曲线的定义,来求解轨迹方程,同时能结合直线与椭圆的方程,联立方程组,对于线段相等,运用等腰三角形中线是高线来得到垂直关系进而得到分析,属于中档题。
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com