精英家教网 > 高中数学 > 题目详情

设函数.
(1)若,求的单调区间;
(2)若当,求的取值范围

(1)单调减少,在单调增加;(2).

解析试题分析:(1)时,求出导数,然后令即可得到函数的单调区间;(2)求出导数,再根据(1)得,故原问题转化为,从而对 的符号进行讨论即可得出结果.
试题解析:(1)时,.
时,;当时,.故单调减少,在单调增加.
(2)
由(I)知,当且仅当时等号成立.故
从而当,即时,,而
于是当时,.
可得.从而当时,

故当时,,而,于是当时,.
综合得的取值范围为.
考点:1.导数求函数的单调性;2.导数在求字幕取值范围中的应用;2.分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底)
(1)求的最小值;
(2)设不等式的解集为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若,对定义域内任意x,均有恒成立,求实数a的取值范围?
(Ⅲ)证明:对任意的正整数恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数为实常数).
(1)当时,求函数处的切线方程;
(2)设.
①求函数的单调区间;
②若函数的定义域为,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数.
(1)若,求曲线在点处的切线方程;
(2)若无零点,求实数的取值范围;
(3)若有两个相异零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点,直线与函数的图象交于点,与轴交于点,记的面积为.

(Ⅰ)求函数的解析式;
(Ⅱ)求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,函数.
(1)若,求函数的极值与单调区间;
(2)若函数的图象在处的切线与直线平行,求的值;
(3)若函数的图象与直线有三个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若函数上是增函数,求正实数的取值范围;
(Ⅱ)若,设,求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若上是增函数,求实数的取值范围.
(Ⅱ)若的一个极值点,求上的最大值.

查看答案和解析>>

同步练习册答案