精英家教网 > 高中数学 > 题目详情
若关于x的不等式a≤-3x+4≤b的解集恰好是[a,b],则a+b的值为( )
A.5
B.4
C.
D.
【答案】分析:确定f(x)=-3x+4的对称轴,然后讨论对称轴是否在区间[a,b]内,分别求解即可.
解答:解:令f(x)=-3x+4.对称轴为x=2,
若a≥2,则a,b是方程f(x)=x的两个实根,解得a=,b=4,矛盾,易错选D;
若b≤2,则f(a)=b,f(b)=a,相减得a+b=,代入可得a=b=,矛盾,易错选C;
若a<2<b,因为f(x)min=1,所以a=1,b=4.因为x=0时与x=4时,函数值相同:4,所以a=0,
a+b=4,
故选B.
点评:本题考查一元二次不等式的应用,考查分析问题解决问题的能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的不等式a≤
3
4
x2
-3x+4≤b的解集恰好是[a,b],则a+b的值为(  )
A、5
B、4
C、
8
3
D、
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式a≤
34
x2-3x+4≤b的解集恰好是[a,b],则a+b=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)设函数f(x)=|2x+1|-|x-2|.
(1)若关于x的不等式a≥f(x)存在实数解,求实数a的取值范围;
(2)若?x∈R,f(x)≥-t2-
52
t-1
恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(不等式选讲)若关于x的不等式|a-1|≥(|2x+1|+|2x-3|)的解集非空,则实数a的取值范围是
(-∞,-3]∪[5,+∞)
(-∞,-3]∪[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分)
(1)已知圆的极坐标方程为ρ=2cosθ,则该圆的圆心到直线ρsinθ+2ρcosθ=1的距离是
5
5
5
5

(2)若关于x的不等式|a-1|+2≥|x+1|+|x-3|存在实数解,则实数a的取值范围是
(-∞,-1]∪[3,+∞)
(-∞,-1]∪[3,+∞)

查看答案和解析>>

同步练习册答案