精英家教网 > 高中数学 > 题目详情
已知函数f1(x)=
mx
4x2+16
f2(x)=(
1
2
)|x-m|
其中m∈R且m≠o.
(1)判断函数f1(x)的单调性;
(2)若m<一2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的最值;
分析:(1)用导数法判断其单调性,第一步先求导数,第二步判断,当导数大于零时,函数为增函数,当导数小于零时,函数为减函数.(2)先构造函数,再判断其单调性,然后求最值.
解答:解:(1)∵f1(x)=
m(4-x2)
(2x2+8)2
(2分)
则当m>0时,在(-2,2)上函数f1(x)单调递增;
在(-∞,-2)及(2,+∞)上单调递减.(4分)
当m<0时,在(-2,2)上函数f1(x)单调递减;
在(-∞,-2)及(2,+∞)上单调递增.(6分)

(2)由m<-2,,-2≤x≤2,可得f2(x)=(
1
2
)
x-m
=2m(
1
2
)
x
(8分)
f(x)=f1(x)+f2(x)=
mx
4x2+16
+2m•(
1
2
)x

由(1)知,当m<-2,-2≤x≤2时,f1(x)在[-2,2]上是减函数,
f2(x)=2m•(
1
2
)x
在[-2,2]上也是减函数(10分)
∴当x=-2时,f(x)取最大值4•2m-
m
16
=2m+2-
m
16

当x=2时,f(x)取最小值2m-2+
m
16
(12分)
点评:本题主要考查导数法研究单调性,同进考查了求最值或值域时,必须先研究单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+lnx(a∈R).
(1)当a=
1
2
时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称为g(x)为f1(x),f2(x)的“活动函数”.
已知函数f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx
f2(x)=
1
2
x2+2ax

①若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围;
②当a=
2
3
时,求证:在区间(1,+∞)上,函数f1(x),f2(x)的“活动函数”有无穷多个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+lnx(a∈R).
(1)当a=
1
2
时,求f(x)在区间[1,e]上的最大值和最小值;
(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”.已知函数f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx,f2(x)=
1
2
x2
+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•太原模拟)已知函数f1(x)=axf2(x)=xaf3(x)=logax(其中a>0且a≠1),当x≥0且y≥0时,在同一坐标系中画出其中两个函数的大致图象,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知函数f1(x)=e|x-a|f2(x)=ebx
(I)若f(x)=f1(x)+f2(x)-bf2(-x),是否存在a,b∈R,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由;
〔II)若a=2,b=1.求函数g(x)=f1(x)+f2(x)在R上的单调区间;
(III )对于给定的实数?x0∈[0,1],对?x∈[0,1],有|f1(x)-f2(x0)|<1成立.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f1(x)=x+
4
x
(x≠0),f2(x)=cosx+
4
cosx
(0<x<
π
2
)
,f3(x)=
8x
x2+1
(x>0),f4(x)=
9
x+2
+x(x≥-2)
,其中以4为最小值的函数个数是(  )

查看答案和解析>>

同步练习册答案