精英家教网 > 高中数学 > 题目详情
(2013•揭阳二模)对于集合M,定义函数fM(x)=
-1,x∈M
1,x∉M.
对于两个集合A,B,定义集合A△B={x|fA(x)•fB(x)=-1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A△B的结果为
{1,6,10,12}
{1,6,10,12}
分析:在理解题意的基础上,得到满足fA(x)•fB(x)=-1的x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A},分别求出两个集合后取并集.
解答:解:要使fA(x)•fB(x)=-1,
必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}
={6,10}∪{1,12}={1,6,10,12,},
所以A△B={1,6,10,12}.
故答案为{1,6,10,12}.
点评:本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•揭阳二模)在等差数列{an}中,首项a1=0,公差d≠0,若am=a1+a2+…+a9,则m的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)如图所示,C,D是半圆周上的两个三等分点,直径AB=4,CE⊥AB,垂足为E,BD与CE相交于点F,则BF的长为
2
3
3
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图示,则该几何体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)在图(1)所示的长方形ABCD中,AD=2AB=2,E、F分别为AD、BC的中点,M、N两点分别在AF和CE上运动,且AM=EN=a(0<a<
2
)
.把长方形ABCD沿EF折成大小为θ的二面角A-EF-C,如图(2)所示,其中θ∈(0,
π
2
]

(1)当θ=45°时,求三棱柱BCF-ADE的体积;
(2)求证:不论θ怎么变化,直线MN总与平面BCF平行;
(3)当θ=900a=
2
2
.时,求异面直线MN与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)已知函数f(x)=
1
x-ln(x+1)
,则y=f(x)的图象大致为(  )

查看答案和解析>>

同步练习册答案