精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0)焦点F恰好是双曲线
x2
a2
-
y2
b2
=1
的右焦点,且两条曲线交点的连线过点F,则该双曲线的离心率为
 
分析:先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线,把
p
2
=c代入整理得 c4-6a2c2+a4=0等式两边同除以a4,得到关于离心率e的方程,进而可求得e.
解答:解:由题意,交点为(
p
2
,p),代入双曲线方程得
p2
4
a2
+
p2
b2
=1,又
p
2
=c
c2
a2
+4
c2
b2
=1,化简得 c4-6a2c2+a4=0
∴e4-6e2+1=0
e2=3+2
2
=(1+
2
2
∴e=
2
+1
故答案为
2
+1
点评:本题主要考查了抛物线的应用.要求学生对圆锥曲线的知识能综合掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)已知抛物线y2=2px(p>0),过点M(2p,0)的直线与抛物线相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

同步练习册答案