精英家教网 > 高中数学 > 题目详情

已知是定义在上的偶函数,当时,
(1)用分段函数形式写出上的解析式;   
(2)画出函数的大致图象;并根据图像写出的单调区间;

(1)  (2)图减区间是; 增区间是

解析试题分析:  (2)图略减区间是; 增区间是
考点:本题考查了分段函数的解析式的求法及单调区间
点评:掌握函数单调性和奇偶性的一般判定方法,并能联系其相应的函数的图象特征,加强对函数单调性和奇偶性应用的训练

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(10分)为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为,如图所示。

(1)请写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。那么,从药物释放开始,至少需要经过多少小时后,学生才能回到教室。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的图象过点(1,13),图像关于直线对称。
(1)求的解析式。
(2)已知,
① 若函数的零点有三个,求实数的取值范围;
②求函数在[,2]上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知某公司生产某品牌服装的年固定成本为10万元,每生产一千件,需要另投入2.7万元.设该公司年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.
(I)写出年利润(万元)关于年产量(千件)的函数关系式;
(Ⅱ)年生产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)
已知二次函数满足:,且
解集为
(1)求的解析式;
(2)设,若上的最小值为-4,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分分)
若函数在定义域内某区间上是增函数,而上是减函数,
则称上是“弱增函数”
(1)请分别判断=是否是“弱增函数”,
并简要说明理由;
(2)证明函数(是常数且)在上是“弱增函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)用定义判断的奇偶性;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.
(1)判断函数是否是有界函数,请写出详细判断过程;
(2)试证明:设,若上分别以为上界,
求证:函数上以为上界;
(3)若函数上是以3为上界的有界函数,
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知, 且,求证:

查看答案和解析>>

同步练习册答案