精英家教网 > 高中数学 > 题目详情
14.已知向量$\overrightarrow{a}$=(2cosφ,2sinφ),φ∈($\frac{π}{2}$,π),$\overrightarrow{b}$=(0,-1),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{3π}{2}$-φB.$\frac{π}{2}$+φC.φ-$\frac{π}{2}$D.φ

分析 设向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,θ∈[0,2π],根据cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=-sinφ=cos(φ+$\frac{π}{2}$),求得θ的值.

解答 解:设向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,θ∈[0,2π],∴向量$\overrightarrow{a}$=(2cosφ,2sinφ),φ∈($\frac{π}{2}$,π),$\overrightarrow{b}$=(0,-1),
∴cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{-2sinφ}{2•1}$=-sinφ=cos(φ+$\frac{π}{2}$),
结合φ+$\frac{π}{2}$∈(π,$\frac{3π}{2}$),可得θ=φ+$\frac{π}{2}$,
故选:B.

点评 本题主要考查用两个向量的数量积表示两个向量的夹角,诱导公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB.设直线BD、AB的斜率分别为k1、k2,若$\frac{k_1}{k_2}=\frac{3}{4}$,则椭圆C的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x,y满足$\left\{{\begin{array}{l}{x+y≤6}\\{x≥1}\\{y≥3}\end{array}}\right.$,则$\frac{y}{x}$的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)=log2(x-2),若实数m,n满足f(m)+f(n)=3,则m+n的最小值为(  )
A.5B.7C.4+4$\sqrt{2}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知两平行直线3x-4y+1=0和3x-4y-4=0,则两直线的距离为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列不等式成立的是(  )
A.($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{5}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$B.($\frac{1}{2}$)${\;}^{\frac{1}{3}}$>($\frac{1}{2}$)${\;}^{\frac{2}{3}}$>($\frac{1}{5}$)${\;}^{\frac{2}{3}}$
C.($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{5}$)${\;}^{\frac{2}{3}}$D.($\frac{1}{2}$)${\;}^{\frac{2}{3}}$><($\frac{1}{5}$)${\;}^{\frac{2}{3}}$>($\frac{1}{2}$)${\;}^{\frac{1}{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的定义域为(-1,1),则函数f(2x-1)的定义域为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输入的x=2,n=4,则输出的s等于(  )
A.94B.99C.45D.203

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且线段AB的最小长度为4.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,证明直线AP与x轴交于一定点并求出该定点坐标.

查看答案和解析>>

同步练习册答案