精英家教网 > 高中数学 > 题目详情

【题目】已知函数,设,其中

1若函数在区间上单调递增,求实数的取值范围;

2,求证:

【答案】1.(2证明见解析

【解析】

试题分析:1求得导函数,代入求得的解析式,在区间上单调递增,可知,在区间上恒成立,即上恒成立构造辅助函数求导,利用导数求得函数的最小值,即可求得的取值范围;21求得的解析式进一步化解,构造辅助函数,求导,利用导数求的函数的单调区间及最小值,即可求得

试题解析:解:1函数

所以函数函数在区间上单调递增,

在区间上恒成立,所以上恒成立

,则,当时,

实数的取值范围为

2

,则

,则,显然在区间上单调递减,在区间上单调递增,则,则,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十一国庆节期间,某商场举行购物抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得3分;方案乙的中奖率为,中奖可以获得2分;未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,抽奖结束后凭分数兑换奖品.

(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;

(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,分别求两种方案下小明、小红累计得分的分布列,并指出为了累计得分较大,两种方案下他们选择何种方案较好,并给出理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知曲线,将曲线上的点向左平移一个单位,然后纵坐标不变,横坐标轴伸长到原来的2倍,得到曲线,又已知直线是参数),且直线与曲线交于两点.

I)求曲线的直角坐标方程,并说明它是什么曲线;

II)设定点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,离心率为分别为左右焦点.

1)求椭圆的标准方程;

2)若上存在两个点,椭圆上有两个点满足三点共线,三点共线,且,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)五点法作出函数在一个周期内的简图;

(2)求出函数的最大值及取得最大值时的x的值;

(3)求出函数在上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1若函数处有极值,求函数的最大值;

2①是否存在实数,使得关于的不等式上恒成立?若存在,求出的取值范围;若不存在,说明理由;

②证明:不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国的高铁技术发展迅速,铁道部门计划在两城市之间开通高速列车,假设列车在试运行期间,每天在两个时间段内各发一趟由城开往城的列车(两车发车情况互不影响),城发车时间及概率如下表所示:

发车

时间

概率

若甲、乙两位旅客打算从城到城,他们到达火车站的时间分别是周六的和周日的(只考虑候车时间,不考虑其他因素).

(1)设乙候车所需时间为随机变量(单位:分钟),求的分布列和数学期望

(2)求甲、乙两人候车时间相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形中,分别在上,且,沿将四边形折成四边形,使点在平面上的射影在直线上,且.

(1)求证:平面

(2)求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其最小正周期为

1在区间上的减区间

2将函数图象上所有点的横坐标伸长到原来的2倍纵坐标不变,再将所得的图象向右平移个单位得到函数的图象若关于的方程在区间上有且只有一个实数根求实数的取值范围

查看答案和解析>>

同步练习册答案