分析 通过讨论x的范围,得到f(x)的表达式,画出函数f(x)的图象,读图即可.
解答 解:①x-1≥0即x≥1时:
|x-1|=x-1,
由x-1-[-x2+11]=x2+x-12=(x-3)(x+4)≤0,
解得:1≤x≤3,
故1≤x≤3时:f(x)=x-1,
由(x-3)(x+4)>0,解得:x>3,
故x>3时:f(x)=-x2+11,
②x-1<0即x<1时:
|x-1|=1-x,
由1-x-[-x2+11]=${(x-\frac{1}{2})}^{2}$-$\frac{41}{4}$>0,
解得:x<$\frac{1-\sqrt{41}}{2}$,
故x<$\frac{1-\sqrt{41}}{2}$时:f(x)=-x2+11,
由${(x-\frac{1}{2})}^{2}$-$\frac{41}{4}$<0,
解得:$\frac{1-\sqrt{41}}{2}$<x<1,
故$\frac{1-\sqrt{41}}{2}$<x<1时:f(x)=1-x,
画出函数f(x)的图象,如图示:
,
由图象得0<m<2,
故答案为:(0,2).
点评 本题考察了分类讨论思想,考察数形结合思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a+b=0且a-b>0 | B. | a+b=0且a-b<0 | C. | a-b=0且a+b>0 | D. | a-b=0且a+b<0. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com