分析 (1)利用倍角公式、和差公式可得f(x),再利用三角函数的值域即可得出.
(2)a<b,可得A为锐角,由f(A)=2,可得2sin$(2A+\frac{π}{6})$=2,解得A,再利用余弦定理与正弦定理即可得出.
解答 解:(1)f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1=$\sqrt{3}$sin2x+cos2x=2$sin(2x+\frac{π}{6})$≤2.
当$sin(2x+\frac{π}{6})$=1,即2x+$\frac{π}{6}$=$\frac{π}{2}$+2kπ,解得x=kπ+$\frac{π}{6}$,k∈Z时取等号.
∴f(x)的最大值为2,该函数取最大值时x的取值集合为{x|x=kπ+$\frac{π}{6}$,k∈Z}.
(2)f(A)=2,∴2sin$(2A+\frac{π}{6})$=2,解得A=kπ+$\frac{π}{6}$,k∈Z.
∵a<b,∴A为锐角,
∴A=$\frac{π}{6}$.
由余弦定理可得:a2=b2+c2-2bccosA,
∴12=$(\sqrt{2})^{2}$+c2-2$\sqrt{2}$c$cos\frac{π}{6}$,
化为:${c}^{2}-\sqrt{6}$c+1=0,
解得c=$\frac{\sqrt{6}±\sqrt{2}}{2}$.
由正弦定理可得:$\frac{a}{sinA}=\frac{c}{sinC}$,
可得sinC=$\frac{csinA}{a}$=$\frac{\sqrt{6}±\sqrt{2}}{2}$×$\frac{1}{2}$=$\frac{\sqrt{6}±\sqrt{2}}{4}$.
∴C=15°,75°,或105°.
点评 本题考查了倍角公式、和差公式、三角函数的值域、余弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:解答题
设数列的前项和为,且,为等差数列,且,.
(1)求数列和通项公式;
(2)设,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:解答题
某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段:,,…,后得到如下频率分布直方图.
(Ⅰ)求分数在内的频率;
(Ⅱ)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分、众数、中位数;(小数点后保留一位有效数字)
(Ⅲ)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{2\sqrt{5}}}{5}$ | B. | $\frac{16}{5}$ | C. | 2$\sqrt{41}$ | D. | 164 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | B. | $\frac{x^2}{18}-\frac{y^2}{32}=1$ | C. | $\frac{x^2}{9}-\frac{y^2}{25}=1$ | D. | $\frac{x^2}{36}-\frac{y^2}{64}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{2}$+$\frac{1}{3}$ | C. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | D. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com