精英家教网 > 高中数学 > 题目详情
9.(1)求定积分${∫}_{-2}^{1}$|x2-2|dx的值;
(2)若复数z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,求|z1|

分析 (1)对x分类讨论,利用微积分基本定理即可得出.
(2)利用复数的运算法则、纯虚数的定义即可得出.

解答 解:(1)${∫}_{-2}^{1}$|x2-2|dx=${∫}_{-2}^{-\sqrt{2}}({x}^{2}-2)dx$+${∫}_{-\sqrt{2}}^{1}$(2-x2)dx=$(\frac{{x}^{3}}{3}-2x){|}_{-2}^{-\sqrt{2}}$+$(2x-\frac{{x}^{3}}{3}){|}_{-\sqrt{2}}^{1}$=$\frac{8}{3}\sqrt{2}$+$\frac{1}{3}$.
(2)∵$\frac{{z}_{1}}{{z}_{2}}$=$\frac{a+2i}{3-4i}$=$\frac{(a+2i)(3+4i)}{(3-4i)(3+4i)}$=$\frac{3a-8}{25}$+$\frac{(4a+6)}{25}$i为纯虚数,
∴$\frac{3a-8}{25}$=0,$\frac{(4a+6)}{25}$≠0,
解得a=$\frac{8}{3}$.

点评 本题考查了微积分基本定理、复数的运算法则、纯虚数的定义,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知长方体同一个顶点的三条棱长分别为2,3,4,则该长方体的外接球的表面积等于(  )
A.13πB.25πC.29πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟到达N处后,又测得灯塔在货轮的北偏东45°,则货轮的速度为(  )
A.$20(\sqrt{3}+\sqrt{6})$海里/时B.$20(\sqrt{6}-\sqrt{3})$海里/时C.$20(\sqrt{2}+\sqrt{6})$海里/时D.$20(\sqrt{6}-\sqrt{2})$海里/时

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设复数z=$\frac{2+i}{(1+i)^{2}}$(i为虚数单位),则z的共轭复数的虚部是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出下列四个命题:
①函数f(x)=x+$\frac{9}{x}$的最小值为6;    
②不等式$\frac{2x}{x+1}$<1的解集是{x|-1<x<1};
③若a>b>-1,则$\frac{a}{1+a}$>$\frac{b}{1+b}$;        
④若a>b,c>d,则ac>bd.
所有正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x+$\frac{1}{x}$,x∈(1,+∞).
(1)证明f(x)为增函数
(2)若f(3x)>f(x+1),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4)则第60个整数对是(  )
A.(5,11)B.(11,5)C.(7,5)D.(5,7)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}满足a1=0,|an+1|=|an-2|,记数列{an}的前2016项和为S,则S的最大值为2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$的部分图象如图所示.
(Ⅰ)  求函数f(x)的解析式;
(Ⅱ)  若f($\frac{α}{2}$)=$\frac{4}{5}$,求sin($\frac{5π}{6}$-α)的值.

查看答案和解析>>

同步练习册答案