精英家教网 > 高中数学 > 题目详情

【题目】 已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

【答案】【解答】(Ⅰ)第一次检测出的是次品且第二次检测出的是正品的概率 ;
(Ⅱ)设检测的次数为ξ,则ξ的取值为2,3,4;ξ=2对应事件:“前2个排的均是次品” ,ξ=4对应事件:“前3次检测的是2个正品和1个次品”
P(ξ=3)=1-P(ξ=2)-P(ξ=4)= ;又由X=100ξ, X的分布列为:

x

200

300

400

2

3

4

p

E(X)=100E(ξ)=100( )=350.
【解析】(1)依据题目所给的条件可以现设“第一次检查出的是次品且第二次检测出的是正品”的概率为A,得出P(A)=
(2)X的可能取值为200.300.400依此求出各自的概率 , 列出EX=350

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·湖南)已知抛物线C1:x2=4y的焦点F也是椭圆C2:(a>b>0)的一个焦点,C1与C2的公共弦长为2,过点F的直线l与C1相交于A, B两点,与C2相交于C,D两点,且 同向.
(1)C2的方程
(2)|AC|=|BD|,求直线l的斜率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥P-ABC中,PA平面ABC,

(1)(Ⅰ)求三棱锥P-ABC的体积;
(2)(Ⅱ)证明:在线段PC上存在点M,使得ACBM,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额
(单位:万元)都在区间内,其频率分布直方图如图所示.
(Ⅰ)直方图中的
(Ⅱ)在这些购物者中,消费金额在区间内的购物者的人数为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(2015·重庆)如题(21)图,椭圆的左右焦点分别为且过的直线交椭圆于两点,


(1)若求椭圆的标准方程。
(2)若,且,试确定椭圆离心率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)根据如图框图,当输入x为2006时,输出的y=(  )

A.28
B.10
C.4
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:

T(分钟)

25

30

35

40

频数(次)

20

30

40

10


(1)求T的分布列与数学期望ET;
(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱台上、下底面分别是边长为3和6的正方形,,且
底面,点分别在棱上.
(1)若是的中点,证明:;
(2若//平面,二面角的余弦值为,求四面体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1(b>a>0)的右焦点为F,O为坐标原点,若存在直线l过点F交双曲线C的右支于A,B两点,使 =0,则双曲线离心率的取值范围是

查看答案和解析>>

同步练习册答案