精英家教网 > 高中数学 > 题目详情

【题目】解答题。
(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真.
(2)写出上述命题的逆命题,并判断其真假(不需要证明)

【答案】
(1)证明:证法一:如图,过直线b上任一点作平面α的垂线n,设直线a,b,c,n对应的方向向量分别是 ,则 共面,

根据平面向量基本定理,存在实数λ,μ使得

=

因为a⊥b,所以

又因为aα,n⊥α,

所以

,从而a⊥c

证法二

如图,记c∩b=A,P为直线b上异于点A的任意一点,过P做PO⊥π,垂足为O,则O∈c,

∵PO⊥π,aπ,

∴直线PO⊥a,

又a⊥b,b平面PAO,PO∩b=P,

∴a⊥平面PAO,

又c平面PAO,

∴a⊥c


(2)证明:逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥c,则a⊥b,

逆命题为真命题


【解析】(1)证法一:做出辅助线,在直线上构造对应的方向向量,要证两条直线垂直,只要证明两条直线对应的向量的数量积等于0,根据向量的运算法则得到结果.证法二:做出辅助线,根据线面垂直的性质,得到线线垂直,根据线面垂直的判定定理,得到线面垂直,再根据性质得到结论.(2)把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市疾病控制中心今日对我校高二学生进行了某项健康调查,调查的方法是采取分层抽样的方法抽取样本.我校高二学生共有2000人,抽取了一人200人的样本,样本中男生103人,请问我校共有女生(
A.970
B.1030
C.997
D.206

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某工厂对甲乙两个车间各10名工人生产的合格产品的统计结果的茎叶图.设甲、乙的中位数分别为x、x , 甲、乙的方差分别为s2、s2 , 则(
A.x<x , s2<s2
B.x>x , s2>s2
C.x>x , s2<s2
D.x<x , s2>s2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,E为BC上的动点.

(1)当E为BC的中点时,求证:PE⊥DE;
(2)设PA=1,在线段BC上存在这样的点E,使得二面角P﹣ED﹣A的平面角大小为 .试确定点E的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,A为以原点O为圆心的单位圆O与x正半轴的交点,在圆心角为 的扇形AOB的弧AB上任取一点 P,作 PN⊥OA于N,连结PO,记∠PON=θ.
(1)设△PON的面积为y,使y取得最大值时的点P记为E,点N记为F,求此时 的值;
(2)求k=a| || |+ (a∈R,E 是在(1)条件下的点 E)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c,其对称轴为y轴(其中b,c为常数) (Ⅰ)求实数b的值;
(Ⅱ)记函数g(x)=f(x)﹣2,若函数g(x)有两个不同的零点,求实数c的取值范围;
(Ⅲ)求证:不等式f(c2+1)>f(c)对任意c∈R成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面为矩形,PA是四棱锥的高,PB与DC所成角为45°,F是PB的中点,E是BC上的动点.
(Ⅰ)证明:PE⊥AF;
(Ⅱ)若BC=2BE=2 AB,求直线AP与平面PDE所成角的大小..

查看答案和解析>>

同步练习册答案