精英家教网 > 高中数学 > 题目详情
17.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AC=2$\sqrt{3}$,AA1=$\sqrt{3}$,AB=2,点D在棱B1C1上,且B1C1=4B1D
(Ⅰ)求证:BD⊥A1C
(Ⅱ)求二面角B-A1D-C的大小.

分析 (Ⅰ)分别以AB、AC、AA1所在直线为x、y、z轴建立空间直角坐标系,由已知得到所用点的坐标,求得$\overrightarrow{BD}、\overrightarrow{{A}_{1}C}$的坐标,由两向量的数量积为0说明BD⊥A1C;
(Ⅱ)分别求出平面BDA1与平面A1DC的一个法向量,由两法向量所成角的余弦值求得二面角B-A1D-C的大小.

解答 (Ⅰ)证明:分别以AB、AC、AA1所在直线为x、y、z轴建立空间直角坐标系,
∵AC=2$\sqrt{3}$,AA1=$\sqrt{3}$,AB=2,点D在棱B1C1上,且B1C1=4B1D,
∴B(2,0,0),C(0,$2\sqrt{3}$,0),A1(0,0,$\sqrt{3}$),D($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$,$\sqrt{3}$).
则$\overrightarrow{BD}=(-\frac{1}{2},\frac{\sqrt{3}}{2},\sqrt{3})$,$\overrightarrow{{A}_{1}C}=(0,2\sqrt{3},-\sqrt{3})$,
∴$\overrightarrow{BD}•\overrightarrow{{A}_{1}C}=-\frac{1}{2}×0+\frac{\sqrt{3}}{2}×2\sqrt{3}-\sqrt{3}×\sqrt{3}=0$.
∴BD⊥A1C;
(Ⅱ)解:设平面BDA1的一个法向量为$\overrightarrow{m}=(x,y,z)$,$\overrightarrow{B{A}_{1}}=(-2,0,\sqrt{3})$,$\overrightarrow{BD}=(-\frac{1}{2},\frac{\sqrt{3}}{2},\sqrt{3})$,
∴$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{B{A}_{1}}=-2x+\sqrt{3}z=0}\\{\overrightarrow{m}•\overrightarrow{BD}=-\frac{1}{2}x+\frac{\sqrt{3}}{2}y+\sqrt{3}z=0}\end{array}\right.$,取z=2,则$\overrightarrow{m}=(\sqrt{3},-3,2)$;
设平面A1DC的一个法向量为$\overrightarrow{n}=(x,y,z)$,$\overrightarrow{DC}=(-\frac{3}{2},\frac{3\sqrt{3}}{2},-\sqrt{3})$,$\overrightarrow{C{A}_{1}}=(0,-2\sqrt{3},\sqrt{3})$,
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DC}=-\frac{3}{2}x+\frac{3\sqrt{3}}{2}y-\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{C{A}_{1}}=-2\sqrt{3}y+\sqrt{3}z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}=(-\sqrt{3},1,2)$.
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-2}{4×2\sqrt{2}}=-\frac{\sqrt{2}}{8}$.
∴二面角B-A1D-C的大小为arccos$\frac{\sqrt{2}}{8}$.

点评 本题考查空间中直线与直线位置关系的判定,考查二面角的平面角的求法,训练了空间向量在求解立体几何问题中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某单位员工按年龄分为A、B、C三个等级,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为20的样本,则从C等级组中应抽取的样本数为(  )
A.2B.4C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinα=-$\sqrt{3}$cosα,则tan2α=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-2)}\end{array}\right.$,若z=2x+y的最大值为$\frac{11}{2}$,则a=(  )
A.5B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为$\frac{\sqrt{3}}{3}$,M,N分别是AC.BC的中点,则EM,AN所成角的余弦值等于(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=3cos(2x+$\frac{π}{6}$)的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知P(x0,y0)是单位圆上任一点,将射线OP绕点O顺时针转$\frac{π}{3}$到OQ交单位圆与点Q(x1,y1),若my0-y1的最大值为$\frac{3}{2}$,则实数m=$\frac{1±\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=-x3(x>0),若f(m)-$\frac{1}{2}$m2≤f(1-m)-$\frac{1}{2}$(1-m)2,则m的取值范围为[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{3}$x3-x2-3x+1.
(1)求y=f(x)在x=1处的切线方程;
(2)求y=f(x)的极值点.

查看答案和解析>>

同步练习册答案